SyllabusQA: A Course Logistics Question Answering Dataset
- URL: http://arxiv.org/abs/2403.14666v2
- Date: Mon, 22 Jul 2024 20:37:55 GMT
- Title: SyllabusQA: A Course Logistics Question Answering Dataset
- Authors: Nigel Fernandez, Alexander Scarlatos, Andrew Lan,
- Abstract summary: We introduce SyllabusQA, an open-source dataset with 63 real course syllabi covering 36 majors, containing 5,078 open-ended course logistics-related question-answer pairs.
We benchmark several strong baselines on this task, from large language model prompting to retrieval-augmented generation.
We find that despite performing close to humans on traditional metrics of textual similarity, there remains a significant gap between automated approaches and humans in terms of fact precision.
- Score: 45.90423821963144
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automated teaching assistants and chatbots have significant potential to reduce the workload of human instructors, especially for logistics-related question answering, which is important to students yet repetitive for instructors. However, due to privacy concerns, there is a lack of publicly available datasets. We introduce SyllabusQA, an open-source dataset with 63 real course syllabi covering 36 majors, containing 5,078 open-ended course logistics-related question-answer pairs that are diverse in both question types and answer formats. Since many logistics-related questions contain critical information like the date of an exam, it is important to evaluate the factuality of answers. We benchmark several strong baselines on this task, from large language model prompting to retrieval-augmented generation. We introduce Fact-QA, an LLM-based (GPT-4) evaluation metric to evaluate the factuality of predicted answers. We find that despite performing close to humans on traditional metrics of textual similarity, there remains a significant gap between automated approaches and humans in terms of fact precision.
Related papers
- Are LLMs Capable of Data-based Statistical and Causal Reasoning? Benchmarking Advanced Quantitative Reasoning with Data [89.2410799619405]
We introduce the Quantitative Reasoning with Data benchmark to evaluate Large Language Models' capability in statistical and causal reasoning with real-world data.
The benchmark comprises a dataset of 411 questions accompanied by data sheets from textbooks, online learning materials, and academic papers.
To compare models' quantitative reasoning abilities on data and text, we enrich the benchmark with an auxiliary set of 290 text-only questions, namely QRText.
arXiv Detail & Related papers (2024-02-27T16:15:03Z) - ExpertQA: Expert-Curated Questions and Attributed Answers [51.68314045809179]
We conduct human evaluation of responses from a few representative systems along various axes of attribution and factuality.
We collect expert-curated questions from 484 participants across 32 fields of study, and then ask the same experts to evaluate generated responses to their own questions.
The output of our analysis is ExpertQA, a high-quality long-form QA dataset with 2177 questions spanning 32 fields, along with verified answers and attributions for claims in the answers.
arXiv Detail & Related papers (2023-09-14T16:54:34Z) - Connecting Humanities and Social Sciences: Applying Language and Speech
Technology to Online Panel Surveys [2.0646127669654835]
We explore the application of language and speech technology to open-ended questions in a Dutch panel survey.
In an experimental wave respondents could choose to answer open questions via speech or keyboard.
We report the errors the ASR system produces and investigate the impact of these errors on downstream analyses.
arXiv Detail & Related papers (2023-02-21T10:52:15Z) - CREPE: Open-Domain Question Answering with False Presuppositions [92.20501870319765]
We introduce CREPE, a QA dataset containing a natural distribution of presupposition failures from online information-seeking forums.
We find that 25% of questions contain false presuppositions, and provide annotations for these presuppositions and their corrections.
We show that adaptations of existing open-domain QA models can find presuppositions moderately well, but struggle when predicting whether a presupposition is factually correct.
arXiv Detail & Related papers (2022-11-30T18:54:49Z) - Learn to Explain: Multimodal Reasoning via Thought Chains for Science
Question Answering [124.16250115608604]
We present Science Question Answering (SQA), a new benchmark that consists of 21k multimodal multiple choice questions with a diverse set of science topics and annotations of their answers with corresponding lectures and explanations.
We show that SQA improves the question answering performance by 1.20% in few-shot GPT-3 and 3.99% in fine-tuned UnifiedQA.
Our analysis further shows that language models, similar to humans, benefit from explanations to learn from fewer data and achieve the same performance with just 40% of the data.
arXiv Detail & Related papers (2022-09-20T07:04:24Z) - Automatic Short Math Answer Grading via In-context Meta-learning [2.0263791972068628]
We study the problem of automatic short answer grading for students' responses to math questions.
We use MathBERT, a variant of the popular language model BERT adapted to mathematical content, as our base model.
Second, we use an in-context learning approach that provides scoring examples as input to the language model.
arXiv Detail & Related papers (2022-05-30T16:26:02Z) - Question Answering Survey: Directions, Challenges, Datasets, Evaluation
Matrices [0.0]
The research directions of QA field are analyzed based on the type of question, answer type, source of evidence-answer, and modeling approach.
This detailed followed by open challenges of the field like automatic question generation, similarity detection and, low resource availability for a language.
arXiv Detail & Related papers (2021-12-07T08:53:40Z) - Inquisitive Question Generation for High Level Text Comprehension [60.21497846332531]
We introduce INQUISITIVE, a dataset of 19K questions that are elicited while a person is reading through a document.
We show that readers engage in a series of pragmatic strategies to seek information.
We evaluate question generation models based on GPT-2 and show that our model is able to generate reasonable questions.
arXiv Detail & Related papers (2020-10-04T19:03:39Z) - ProtoQA: A Question Answering Dataset for Prototypical Common-Sense
Reasoning [35.6375880208001]
This paper introduces a new question answering dataset for training and evaluating common sense reasoning capabilities of artificial intelligence systems.
The training set is gathered from an existing set of questions played in a long-running international game show FAMILY- FEUD.
We also propose a generative evaluation task where a model has to output a ranked list of answers, ideally covering prototypical answers for a question.
arXiv Detail & Related papers (2020-05-02T09:40:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.