Are LLMs Capable of Data-based Statistical and Causal Reasoning? Benchmarking Advanced Quantitative Reasoning with Data
- URL: http://arxiv.org/abs/2402.17644v2
- Date: Sun, 9 Jun 2024 13:54:09 GMT
- Title: Are LLMs Capable of Data-based Statistical and Causal Reasoning? Benchmarking Advanced Quantitative Reasoning with Data
- Authors: Xiao Liu, Zirui Wu, Xueqing Wu, Pan Lu, Kai-Wei Chang, Yansong Feng,
- Abstract summary: We introduce the Quantitative Reasoning with Data benchmark to evaluate Large Language Models' capability in statistical and causal reasoning with real-world data.
The benchmark comprises a dataset of 411 questions accompanied by data sheets from textbooks, online learning materials, and academic papers.
To compare models' quantitative reasoning abilities on data and text, we enrich the benchmark with an auxiliary set of 290 text-only questions, namely QRText.
- Score: 89.2410799619405
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Quantitative reasoning is a critical skill to analyze data, yet the assessment of such ability remains limited. To address this gap, we introduce the Quantitative Reasoning with Data (QRData) benchmark, aiming to evaluate Large Language Models' capability in statistical and causal reasoning with real-world data. The benchmark comprises a carefully constructed dataset of 411 questions accompanied by data sheets from textbooks, online learning materials, and academic papers. To compare models' quantitative reasoning abilities on data and text, we enrich the benchmark with an auxiliary set of 290 text-only questions, namely QRText. We evaluate natural language reasoning, program-based reasoning, and agent reasoning methods including Chain-of-Thought, Program-of-Thoughts, ReAct, and code interpreter assistants on diverse models. The strongest model GPT-4 achieves an accuracy of 58%, which has much room for improvement. Among open-source models, Deepseek-coder-instruct, a code LLM pretrained on 2T tokens, gets the highest accuracy of 37%. Analysis reveals that models encounter difficulties in data analysis and causal reasoning, and struggle in using causal knowledge and provided data simultaneously. Code and data are in https://github.com/xxxiaol/QRData.
Related papers
- StatLLM: A Dataset for Evaluating the Performance of Large Language Models in Statistical Analysis [2.5541378136265047]
StatLLM is an open-source dataset for evaluating the performance of large language models in statistical analysis.
The first component includes statistical analysis tasks spanning a variety of analyses and datasets.
The second component features SAS code generated by ChatGPT 3.5, ChatGPT 4.0, and Llama 3.1 for those tasks.
The third component contains evaluation scores from human experts in assessing the correctness, effectiveness, readability, executability, and output accuracy of the LLM-generated code.
arXiv Detail & Related papers (2025-02-24T21:11:20Z) - Performance Evaluation of Large Language Models in Statistical Programming [9.333703895770913]
Large language models (LLMs) have revolutionized automatic code generation and opened new avenues for automatic statistical analysis.
We assess the performance of LLMs, including two versions of ChatGPT and one version of Llama, in the domain of SAS programming for statistical analysis.
We conduct a comprehensive assessment of the quality of SAS code generated by LLMs through human expert evaluation based on correctness, effectiveness, readability, executability, and the accuracy of output results.
arXiv Detail & Related papers (2025-02-18T18:37:15Z) - Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
"Context is Key" (CiK) is a time series forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context.
We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters.
Our experiments highlight the importance of incorporating contextual information, demonstrate surprising performance when using LLM-based forecasting models, and also reveal some of their critical shortcomings.
arXiv Detail & Related papers (2024-10-24T17:56:08Z) - Training on the Benchmark Is Not All You Need [52.01920740114261]
We propose a simple and effective data leakage detection method based on the contents of multiple-choice options.
Our method is able to work under gray-box conditions without access to model training data or weights.
We evaluate the degree of data leakage of 35 mainstream open-source LLMs on four benchmark datasets.
arXiv Detail & Related papers (2024-09-03T11:09:44Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
We propose a novel paradigm that uses a code-based critic model to guide steps including question-code data construction, quality control, and complementary evaluation.
Experiments across both in-domain and out-of-domain benchmarks in English and Chinese demonstrate the effectiveness of the proposed paradigm.
arXiv Detail & Related papers (2024-08-28T06:33:03Z) - Reliable Reasoning Beyond Natural Language [0.047888359248129786]
Large Language models (LLMs) often exhibit limitations in their ability to reason reliably and flexibly.
We propose a neurosymbolic approach that prompts LLMs to extract and encode all relevant information from a problem statement as logical code statements.
We then use a logic programming language (Prolog) to conduct the iterative computations of explicit deductive reasoning.
arXiv Detail & Related papers (2024-07-16T04:34:18Z) - Evaluating Mathematical Reasoning Beyond Accuracy [50.09931172314218]
We introduce ReasonEval, a new methodology for evaluating the quality of reasoning steps.
We show that ReasonEval achieves state-of-the-art performance on human-labeled datasets.
We observe that ReasonEval can play a significant role in data selection.
arXiv Detail & Related papers (2024-04-08T17:18:04Z) - DataAgent: Evaluating Large Language Models' Ability to Answer Zero-Shot, Natural Language Queries [0.0]
We evaluate OpenAI's GPT-3.5 as a "Language Data Scientist" (LDS)
The model was tested on a diverse set of benchmark datasets to evaluate its performance across multiple standards.
arXiv Detail & Related papers (2024-03-29T22:59:34Z) - COM2SENSE: A Commonsense Reasoning Benchmark with Complementary
Sentences [21.11065466376105]
Commonsense reasoning is intuitive for humans but has been a long-term challenge for artificial intelligence (AI)
Recent advancements in pretrained language models have shown promising results on several commonsense benchmark datasets.
We introduce a new commonsense reasoning benchmark dataset comprising natural language true/false statements.
arXiv Detail & Related papers (2021-06-02T06:31:55Z) - Improving Commonsense Causal Reasoning by Adversarial Training and Data
Augmentation [14.92157586545743]
This paper presents a number of techniques for making models more robust in the domain of causal reasoning.
We show a statistically significant improvement on performance and on both datasets, even with only a small number of additionally generated data points.
arXiv Detail & Related papers (2021-01-13T09:55:29Z) - Logic-Guided Data Augmentation and Regularization for Consistent
Question Answering [55.05667583529711]
This paper addresses the problem of improving the accuracy and consistency of responses to comparison questions.
Our method leverages logical and linguistic knowledge to augment labeled training data and then uses a consistency-based regularizer to train the model.
arXiv Detail & Related papers (2020-04-21T17:03:08Z) - ReClor: A Reading Comprehension Dataset Requiring Logical Reasoning [85.33459673197149]
We introduce a new Reading dataset requiring logical reasoning (ReClor) extracted from standardized graduate admission examinations.
In this paper, we propose to identify biased data points and separate them into EASY set and the rest as HARD set.
Empirical results show that state-of-the-art models have an outstanding ability to capture biases contained in the dataset with high accuracy on EASY set.
However, they struggle on HARD set with poor performance near that of random guess, indicating more research is needed to essentially enhance the logical reasoning ability of current models.
arXiv Detail & Related papers (2020-02-11T11:54:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.