論文の概要: Large Language Models and User Trust: Focus on Healthcare
- arxiv url: http://arxiv.org/abs/2403.14691v1
- Date: Fri, 15 Mar 2024 04:04:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-01 03:23:33.644821
- Title: Large Language Models and User Trust: Focus on Healthcare
- Title(参考訳): 大規模言語モデルとユーザ信頼:医療に焦点をあてて
- Authors: Avishek Choudhury, Zaria Chaudhry,
- Abstract要約: 本稿では,LLMにおける臨床医の信頼度と,その精度と能力への影響について検討する。
主な関心事の1つは、LLMが学習のアウトプットにより依存するようになると生じる潜在的なフィードバックループである。
LLMの自己参照学習ループと医療専門家のデスクイリングに関連する潜在的なリスクを掘り下げる。
- 参考スコア(独自算出の注目度): 1.6574413179773761
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper explores the evolving relationship between clinician trust in LLMs, the transformation of data sources from predominantly human-generated to AI-generated content, and the subsequent impact on the precision of LLMs and clinician competence. One of the primary concerns identified is the potential feedback loop that arises as LLMs become more reliant on their outputs for learning, which may lead to a degradation in output quality and a reduction in clinician skills due to decreased engagement with fundamental diagnostic processes. While theoretical at this stage, this feedback loop poses a significant challenge as the integration of LLMs in healthcare deepens, emphasizing the need for proactive dialogue and strategic measures to ensure the safe and effective use of LLM technology. Moreover, we delve into the potential risks associated with LLMs' self-referential learning loops and the deskilling of healthcare professionals. The risk of LLMs operating within an echo chamber, where AI-generated content feeds into the learning algorithms, threatens the diversity and quality of the data pool, potentially entrenching biases and reducing the efficacy of LLMs. Concurrently, reliance on LLMs for routine or critical tasks could result in a decline in healthcare providers' diagnostic and thinking skills, particularly affecting the training and development of future professionals.
- Abstract(参考訳): 本稿では, LLMにおける臨床医の信頼関係, 主に人間生成コンテンツからAI生成コンテンツへのデータソースの変換, およびその後のLLMの精度と臨床医の能力への影響について検討する。
主な懸念の1つは、LLMが学習のアウトプットにより頼りになるにつれて生じる潜在的なフィードバックループであり、それによってアウトプットの品質が低下し、基本的な診断プロセスへの関与が減少するクリニックスキルが低下する可能性がある。
理論的には、このフィードバックループは、医療におけるLLMの統合が深まり、LLM技術の安全かつ効果的な利用を確実にするための積極的な対話と戦略的対策の必要性を強調しているため、大きな課題となる。
さらに, LLMの自己参照学習ループや, 医療従事者の机詰めに伴う潜在的なリスクについて検討した。
AI生成したコンテンツが学習アルゴリズムに入力されるエコーチャンバー内で運用されるLLMのリスクは、データプールの多様性と品質を脅かし、バイアスを増大させ、LLMの有効性を低下させる。
同時に、日常的または重要なタスクに対するLLMへの依存は、医療提供者の診断と思考スキルの低下、特に将来の専門家の訓練と開発に影響を与える可能性がある。
関連論文リスト
- Beyond Binary: Towards Fine-Grained LLM-Generated Text Detection via Role Recognition and Involvement Measurement [51.601916604301685]
大規模言語モデル(LLM)は、オンライン談話における信頼を損なう可能性のあるコンテンツを生成する。
現在の手法はバイナリ分類に重点を置いており、人間とAIのコラボレーションのような現実のシナリオの複雑さに対処できないことが多い。
バイナリ分類を超えてこれらの課題に対処するために,LLM生成コンテンツを検出するための新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2024-10-18T08:14:10Z) - The LLM Effect: Are Humans Truly Using LLMs, or Are They Being Influenced By Them Instead? [60.01746782465275]
大規模言語モデル(LLM)は、様々な分析タスクにおいて、人間のパフォーマンスに近い能力を示している。
本稿では,Human-LLMパートナーシップに着目した構造化ユーザスタディにより,特殊作業におけるLLMの効率と精度について検討する。
論文 参考訳(メタデータ) (2024-10-07T02:30:18Z) - PALLM: Evaluating and Enhancing PALLiative Care Conversations with Large Language Models [10.258261180305439]
大規模言語モデル(LLM)は、複雑なコミュニケーションメトリクスを評価するための新しいアプローチを提供する。
LLMは受動的センシングシステムとジャスト・イン・タイム・イン・タイム・イン・イン・介入システムとの統合を通じて、分野を前進させる可能性を提供する。
本研究は, 言語, 文脈内学習, 推論能力を活用した緩和ケアコミュニケーションの質評価手法としてLLMについて検討する。
論文 参考訳(メタデータ) (2024-09-23T16:39:12Z) - Generative LLM Powered Conversational AI Application for Personalized Risk Assessment: A Case Study in COVID-19 [6.367429891237191]
大規模言語モデル(LLM)は、様々な自然言語タスクにおいて顕著な能力を示している。
本研究は,ヒトとAIの会話をストリーミングすることで,LSMを用いた新たな疾病リスク評価手法を示す。
論文 参考訳(メタデータ) (2024-09-23T13:55:13Z) - Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing [56.75702900542643]
大規模言語モデルの自己改善のためのAlphaLLMを紹介する。
モンテカルロ木探索(MCTS)とLLMを統合し、自己改善ループを確立する。
実験の結果,AlphaLLM は付加アノテーションを使わずに LLM の性能を大幅に向上することがわかった。
論文 参考訳(メタデータ) (2024-04-18T15:21:34Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
大規模言語モデル(LLM)のオープンソース化は、アプリケーション開発、イノベーション、科学的進歩を加速させる。
我々の調査は、この信念に対する重大な監視を露呈している。
我々の研究は、慎重に設計されたデモを配置することにより、ベースLSMが悪意のある命令を効果的に解釈し実行できることを実証する。
論文 参考訳(メタデータ) (2024-04-16T13:22:54Z) - Rethinking Machine Unlearning for Large Language Models [85.92660644100582]
大規模言語モデル(LLM)の領域における機械学習の研究
このイニシアチブは、望ましくないデータの影響(機密情報や違法情報など)と関連するモデル機能を排除することを目的としている。
論文 参考訳(メタデータ) (2024-02-13T20:51:58Z) - LLM on FHIR -- Demystifying Health Records [0.32985979395737786]
本研究では,大規模言語モデル(LLM)を用いた健康記録と対話可能なアプリを開発した。
このアプリは、医療データを患者フレンドリーな言語に効果的に翻訳し、その反応を異なる患者プロファイルに適応させることができた。
論文 参考訳(メタデータ) (2024-01-25T17:45:34Z) - Natural Language Programming in Medicine: Administering Evidence Based Clinical Workflows with Autonomous Agents Powered by Generative Large Language Models [29.05425041393475]
ジェネレーティブ・大型言語モデル(LLM)は医療において大きな可能性を秘めている。
本研究は, シミュレーション3次医療センターにおいて, 自律型エージェントとして機能するLSMの可能性を評価した。
論文 参考訳(メタデータ) (2024-01-05T15:09:57Z) - Large Language Models Illuminate a Progressive Pathway to Artificial
Healthcare Assistant: A Review [16.008511195589925]
大規模言語モデル(LLM)は、人間のレベルの言語理解と推論を模倣する有望な能力を示している。
本稿では,医学におけるLSMの応用と意義について概説する。
論文 参考訳(メタデータ) (2023-11-03T13:51:36Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
大規模言語モデル (LLMs) は、数発のテキスト内学習を通じて臨床キュレーションを加速する可能性を示している。
正確性や解釈可能性に関する問題、特に健康のようなミッションクリティカルな領域ではまだ苦戦している。
本稿では,自己検証を用いた汎用的な緩和フレームワークについて検討する。このフレームワークはLLMを利用して,自己抽出のための証明を提供し,その出力をチェックする。
論文 参考訳(メタデータ) (2023-05-30T22:05:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。