Using quantum computers to identify prime numbers via entanglement dynamics
- URL: http://arxiv.org/abs/2403.14703v3
- Date: Thu, 8 Aug 2024 15:34:48 GMT
- Title: Using quantum computers to identify prime numbers via entanglement dynamics
- Authors: Victor F. dos Santos, Jonas Maziero,
- Abstract summary: This article outlines a deterministic algorithm making possible the implementation of this theoretical concept on fault-tolerant computers.
We prove that the diagonal unitary operations employed in our algorithm exhibit a degree two degree contrasting with the previously reported exponential complexity of general diagonal unitaries.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, the entanglement dynamics of two harmonic oscillators initially prepared in a separable-coherent state was demonstrated to offer a pathway for prime number identification. This article presents a generalized approach and outlines a deterministic algorithm making possible the implementation of this theoretical concept on scalable fault-tolerant qubit-based quantum computers. We prove that the diagonal unitary operations employed in our algorithm exhibit a polynomial-time complexity of degree two, contrasting with the previously reported exponential complexity of general diagonal unitaries.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Unified framework for efficiently computable quantum circuits [0.0]
Quantum circuits consisting of Clifford and matchgates are two classes of circuits that are known to be efficiently simulatable on a classical computer.
We introduce a unified framework that shows in a transparent way the special structure that allows these circuits can be efficiently simulatable.
arXiv Detail & Related papers (2024-01-16T08:04:28Z) - Predicting RNA Secondary Structure on Universal Quantum Computer [2.277461161767121]
It is the first step for understanding how RNA structure folds from base sequences that to know how its secondary structure is formed.
Traditional energy-based algorithms are short of precision, particularly for non-nested sequences.
Gate model algorithms for universal quantum computing are not available.
arXiv Detail & Related papers (2023-05-16T15:57:38Z) - Dual Exponential Coupled Cluster Theory: Unitary Adaptation,
Implementation in the Variational Quantum Eigensolver Framework and Pilot
Applications [0.0]
We have developed a unitary variant of a double exponential coupled cluster theory.
The method relies upon the nontrivial action of a unitary, containing a set of rank-two scattering operators.
We have shown that all our schemes can perform uniformly well throughout the molecular potential energy surface.
arXiv Detail & Related papers (2022-07-12T05:10:58Z) - Scalable semi-classical implementation of Shor factoring using
time-multiplexed degenerate optical parametric oscillators [6.872355614088489]
Scheme to encode arbitrarily long integer pairs on degenerate optical parametric oscillations multiplexed in time is proposed.
We show the major algorithmic steps, modular exponentiation and discrete Fourier transform, of Shor's quantum factoring algorithm can be executed in the registers as pulse interferences.
arXiv Detail & Related papers (2022-05-24T09:37:22Z) - First-Order Algorithms for Nonlinear Generalized Nash Equilibrium
Problems [88.58409977434269]
We consider the problem of computing an equilibrium in a class of nonlinear generalized Nash equilibrium problems (NGNEPs)
Our contribution is to provide two simple first-order algorithmic frameworks based on the quadratic penalty method and the augmented Lagrangian method.
We provide nonasymptotic theoretical guarantees for these algorithms.
arXiv Detail & Related papers (2022-04-07T00:11:05Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Detailed Account of Complexity for Implementation of Some Gate-Based
Quantum Algorithms [55.41644538483948]
In particular, some steps of the implementation, as state preparation and readout processes, can surpass the complexity aspects of the algorithm itself.
We present the complexity involved in the full implementation of quantum algorithms for solving linear systems of equations and linear system of differential equations.
arXiv Detail & Related papers (2021-06-23T16:33:33Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Efficient numerical simulation of complex Josephson quantum circuits [0.0]
We present a new theoretical framework for approximate numerical simulation of Josephson quantum circuits.
Simulations based on this framework provide access to a degree of complexity and circuit size heretofore inaccessible to quantitative analysis.
arXiv Detail & Related papers (2020-10-28T12:43:25Z) - Relevant OTOC operators: footprints of the classical dynamics [68.8204255655161]
The OTOC-RE theorem relates the OTOCs summed over a complete base of operators to the second Renyi entropy.
We show that the sum over a small set of relevant operators, is enough in order to obtain a very good approximation for the entropy.
In turn, this provides with an alternative natural indicator of complexity, i.e. the scaling of the number of relevant operators with time.
arXiv Detail & Related papers (2020-07-31T19:23:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.