Predicting RNA Secondary Structure on Universal Quantum Computer
- URL: http://arxiv.org/abs/2305.09561v2
- Date: Wed, 17 May 2023 07:52:10 GMT
- Title: Predicting RNA Secondary Structure on Universal Quantum Computer
- Authors: Ji Jiang, Qipeng Yan, Ye Li, Min Lu, Ziwei Cui, Menghan Dou, Qingchun
Wang, Yu-Chun Wu and Guo-Ping Guo
- Abstract summary: It is the first step for understanding how RNA structure folds from base sequences that to know how its secondary structure is formed.
Traditional energy-based algorithms are short of precision, particularly for non-nested sequences.
Gate model algorithms for universal quantum computing are not available.
- Score: 2.277461161767121
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is the first step for understanding how RNA structure folds from base
sequences that to know how its secondary structure is formed. Traditional
energy-based algorithms are short of precision, particularly for non-nested
sequences, while learning-based algorithms face challenges in obtaining
high-quality training data. Recently, quantum annealer has rapidly predicted
the folding of the secondary structure, highlighting that quantum computing is
a promising solution to this problem. However, gate model algorithms for
universal quantum computing are not available. In this paper, gate-based
quantum algorithms will be presented, which are highly flexible and can be
applied to various physical devices. Mapped all possible secondary structure to
the state of a quadratic Hamiltonian, the whole folding process is described as
a quadratic unconstrained binary optimization model. Then the model can be
solved through quantum approximation optimization algorithm. We demonstrate the
performance with both numerical simulation and experimental realization.
Throughout our benchmark dataset, simulation results suggest that our quantum
approach is comparable in accuracy to classical methods. For non-nested
sequences, our quantum approach outperforms classical energy-based methods.
Experimental results also indicate our method is robust in current noisy
devices. It is the first instance of universal quantum algorithms being
employed to tackle RNA folding problems, and our work provides a valuable model
for utilizing universal quantum computers in solving RNA folding problems.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum Machine Learning: Quantum Kernel Methods [0.0]
Kernel methods are a powerful and popular technique in classical Machine Learning.
The use of a quantum feature space that can only be calculated efficiently on a quantum computer potentially allows for deriving a quantum advantage.
A data dependent projected quantum kernel was shown to provide significant advantage over classical kernels.
arXiv Detail & Related papers (2024-05-02T23:45:29Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Adaptive Circuit Learning of Born Machine: Towards Realization of
Amplitude Embedding and Data Loading [7.88657961743755]
We present a novel algorithm "Adaptive Circuit Learning of Born Machine" (ACLBM)
Our algorithm is tailored to selectively integrate two-qubit entangled gates that best capture the complex entanglement present within the target state.
Empirical results underscore the proficiency of our approach in encoding real-world data through amplitude embedding.
arXiv Detail & Related papers (2023-11-29T16:47:31Z) - Hamiltonian Encoding for Quantum Approximate Time Evolution of Kinetic
Energy Operator [2.184775414778289]
The time evolution operator plays a crucial role in the precise computation of chemical experiments on quantum computers.
We have proposed a new encoding method, namely quantum approximate time evolution (QATE) for the quantum implementation of the kinetic energy operator.
arXiv Detail & Related papers (2023-10-05T05:25:38Z) - Electronic Structure Calculations using Quantum Computing [0.0]
We present a hybrid Classical-Quantum computational procedure that uses the Variational Quantum Eigensolver (VQE) algorithm.
Our algorithm offers a streamlined process requiring fewer computational resources than classical methods.
Results indicate the potential of the algorithm to expedite the development of new materials and technologies.
arXiv Detail & Related papers (2023-05-13T12:02:05Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - Quantum Solver of Contracted Eigenvalue Equations for Scalable Molecular
Simulations on Quantum Computing Devices [0.0]
We introduce a quantum solver of contracted eigenvalue equations, the quantum analogue of classical methods for the energies.
We demonstrate the algorithm though computations on both a quantum simulator and two IBM quantum processing units.
arXiv Detail & Related papers (2020-04-23T18:35:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.