StreamingT2V: Consistent, Dynamic, and Extendable Long Video Generation from Text
- URL: http://arxiv.org/abs/2403.14773v1
- Date: Thu, 21 Mar 2024 18:27:29 GMT
- Title: StreamingT2V: Consistent, Dynamic, and Extendable Long Video Generation from Text
- Authors: Roberto Henschel, Levon Khachatryan, Daniil Hayrapetyan, Hayk Poghosyan, Vahram Tadevosyan, Zhangyang Wang, Shant Navasardyan, Humphrey Shi,
- Abstract summary: We introduce StreamingT2V, an autoregressive approach for long video generation of 80, 240, 600, 1200 or more frames with smooth transitions.
Our code will be available at: https://github.com/Picsart-AI-Research/StreamingT2V.
- Score: 58.49820807662246
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-to-video diffusion models enable the generation of high-quality videos that follow text instructions, making it easy to create diverse and individual content. However, existing approaches mostly focus on high-quality short video generation (typically 16 or 24 frames), ending up with hard-cuts when naively extended to the case of long video synthesis. To overcome these limitations, we introduce StreamingT2V, an autoregressive approach for long video generation of 80, 240, 600, 1200 or more frames with smooth transitions. The key components are:(i) a short-term memory block called conditional attention module (CAM), which conditions the current generation on the features extracted from the previous chunk via an attentional mechanism, leading to consistent chunk transitions, (ii) a long-term memory block called appearance preservation module, which extracts high-level scene and object features from the first video chunk to prevent the model from forgetting the initial scene, and (iii) a randomized blending approach that enables to apply a video enhancer autoregressively for infinitely long videos without inconsistencies between chunks. Experiments show that StreamingT2V generates high motion amount. In contrast, all competing image-to-video methods are prone to video stagnation when applied naively in an autoregressive manner. Thus, we propose with StreamingT2V a high-quality seamless text-to-long video generator that outperforms competitors with consistency and motion. Our code will be available at: https://github.com/Picsart-AI-Research/StreamingT2V
Related papers
- xGen-VideoSyn-1: High-fidelity Text-to-Video Synthesis with Compressed Representations [120.52120919834988]
xGen-SynVideo-1 is a text-to-video (T2V) generation model capable of producing realistic scenes from textual descriptions.
VidVAE compresses video data both spatially and temporally, significantly reducing the length of visual tokens.
DiT model incorporates spatial and temporal self-attention layers, enabling robust generalization across different timeframes and aspect ratios.
arXiv Detail & Related papers (2024-08-22T17:55:22Z) - CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer [55.515836117658985]
We present CogVideoX, a large-scale text-to-video generation model based on diffusion transformer.
It can generate 10-second continuous videos aligned with text prompt, with a frame rate of 16 fps and resolution of 768 * 1360 pixels.
arXiv Detail & Related papers (2024-08-12T11:47:11Z) - Anchored Diffusion for Video Face Reenactment [17.343307538702238]
We introduce Anchored Diffusion, a novel method for synthesizing relatively long and seamless videos.
We train our model on video sequences with random non-uniform temporal spacing and incorporate temporal information via external guidance.
During inference, we leverage the transformer architecture to modify the diffusion process, generating a batch of non-uniform sequences anchored to a common frame.
arXiv Detail & Related papers (2024-07-21T13:14:17Z) - VideoTetris: Towards Compositional Text-to-Video Generation [45.395598467837374]
VideoTetris is a framework that enables compositional T2V generation.
We show that VideoTetris achieves impressive qualitative and quantitative results in T2V generation.
arXiv Detail & Related papers (2024-06-06T17:25:33Z) - FreeNoise: Tuning-Free Longer Video Diffusion via Noise Rescheduling [85.60543452539076]
Existing video generation models are typically trained on a limited number of frames, resulting in the inability to generate high-fidelity long videos during inference.
This study explores the potential of extending the text-driven capability to generate longer videos conditioned on multiple texts.
We propose FreeNoise, a tuning-free and time-efficient paradigm to enhance the generative capabilities of pretrained video diffusion models.
arXiv Detail & Related papers (2023-10-23T17:59:58Z) - Control-A-Video: Controllable Text-to-Video Diffusion Models with Motion Prior and Reward Feedback Learning [50.60891619269651]
Control-A-Video is a controllable T2V diffusion model that can generate videos conditioned on text prompts and reference control maps like edge and depth maps.
We propose novel strategies to incorporate content prior and motion prior into the diffusion-based generation process.
Our framework generates higher-quality, more consistent videos compared to existing state-of-the-art methods in controllable text-to-video generation.
arXiv Detail & Related papers (2023-05-23T09:03:19Z) - ControlVideo: Training-free Controllable Text-to-Video Generation [117.06302461557044]
ControlVideo is a framework to enable natural and efficient text-to-video generation.
It generates both short and long videos within several minutes using one NVIDIA 2080Ti.
arXiv Detail & Related papers (2023-05-22T14:48:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.