CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer
- URL: http://arxiv.org/abs/2408.06072v2
- Date: Tue, 8 Oct 2024 06:28:19 GMT
- Title: CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer
- Authors: Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang, Wenyi Hong, Xiaohan Zhang, Guanyu Feng, Da Yin, Xiaotao Gu, Yuxuan Zhang, Weihan Wang, Yean Cheng, Ting Liu, Bin Xu, Yuxiao Dong, Jie Tang,
- Abstract summary: We present CogVideoX, a large-scale text-to-video generation model based on diffusion transformer.
It can generate 10-second continuous videos aligned with text prompt, with a frame rate of 16 fps and resolution of 768 * 1360 pixels.
- Score: 55.515836117658985
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present CogVideoX, a large-scale text-to-video generation model based on diffusion transformer, which can generate 10-second continuous videos aligned with text prompt, with a frame rate of 16 fps and resolution of 768 * 1360 pixels. Previous video generation models often had limited movement and short durations, and is difficult to generate videos with coherent narratives based on text. We propose several designs to address these issues. First, we propose a 3D Variational Autoencoder (VAE) to compress videos along both spatial and temporal dimensions, to improve both compression rate and video fidelity. Second, to improve the text-video alignment, we propose an expert transformer with the expert adaptive LayerNorm to facilitate the deep fusion between the two modalities. Third, by employing a progressive training and multi-resolution frame pack technique, CogVideoX is adept at producing coherent, long-duration, different shape videos characterized by significant motions. In addition, we develop an effective text-video data processing pipeline that includes various data preprocessing strategies and a video captioning method, greatly contributing to the generation quality and semantic alignment. Results show that CogVideoX demonstrates state-of-the-art performance across both multiple machine metrics and human evaluations. The model weight of both 3D Causal VAE, Video caption model and CogVideoX are publicly available at https://github.com/THUDM/CogVideo.
Related papers
- xGen-VideoSyn-1: High-fidelity Text-to-Video Synthesis with Compressed Representations [120.52120919834988]
xGen-SynVideo-1 is a text-to-video (T2V) generation model capable of producing realistic scenes from textual descriptions.
VidVAE compresses video data both spatially and temporally, significantly reducing the length of visual tokens.
DiT model incorporates spatial and temporal self-attention layers, enabling robust generalization across different timeframes and aspect ratios.
arXiv Detail & Related papers (2024-08-22T17:55:22Z) - When Video Coding Meets Multimodal Large Language Models: A Unified Paradigm for Video Coding [112.44822009714461]
Cross-Modality Video Coding (CMVC) is a pioneering approach to explore multimodality representation and video generative models in video coding.
During decoding, previously encoded components and video generation models are leveraged to create multiple encoding-decoding modes.
Experiments indicate that TT2V achieves effective semantic reconstruction, while IT2V exhibits competitive perceptual consistency.
arXiv Detail & Related papers (2024-08-15T11:36:18Z) - StreamingT2V: Consistent, Dynamic, and Extendable Long Video Generation from Text [58.49820807662246]
We introduce StreamingT2V, an autoregressive approach for long video generation of 80, 240, 600, 1200 or more frames with smooth transitions.
Our code will be available at: https://github.com/Picsart-AI-Research/StreamingT2V.
arXiv Detail & Related papers (2024-03-21T18:27:29Z) - Hybrid Video Diffusion Models with 2D Triplane and 3D Wavelet Representation [35.52770785430601]
We propose a novel hybrid video autoencoder, called HVtemporalDM, which can capture intricate dependencies more effectively.
The HVDM is trained by a hybrid video autoencoder which extracts a disentangled representation of the video.
Our hybrid autoencoder provide a more comprehensive video latent enriching the generated videos with fine structures and details.
arXiv Detail & Related papers (2024-02-21T11:46:16Z) - MagicVideo: Efficient Video Generation With Latent Diffusion Models [76.95903791630624]
We present an efficient text-to-video generation framework based on latent diffusion models, termed MagicVideo.
Due to a novel and efficient 3D U-Net design and modeling video distributions in a low-dimensional space, MagicVideo can synthesize video clips with 256x256 spatial resolution on a single GPU card.
We conduct extensive experiments and demonstrate that MagicVideo can generate high-quality video clips with either realistic or imaginary content.
arXiv Detail & Related papers (2022-11-20T16:40:31Z) - Make-A-Video: Text-to-Video Generation without Text-Video Data [69.20996352229422]
Make-A-Video is an approach for translating the tremendous recent progress in Text-to-Image (T2I) generation to Text-to-Video (T2V)
We design a simple yet effective way to build on T2I models with novel and effective spatial-temporal modules.
In all aspects, spatial and temporal resolution, faithfulness to text, and quality, Make-A-Video sets the new state-of-the-art in text-to-video generation.
arXiv Detail & Related papers (2022-09-29T13:59:46Z) - SwinBERT: End-to-End Transformers with Sparse Attention for Video
Captioning [40.556222166309524]
We present SwinBERT, an end-to-end transformer-based model for video captioning.
Our method adopts a video transformer to encode spatial-temporal representations that can adapt to variable lengths of video input.
Based on this model architecture, we show that video captioning can benefit significantly from more densely sampled video frames.
arXiv Detail & Related papers (2021-11-25T18:02:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.