論文の概要: A Collection of Pragmatic-Similarity Judgments over Spoken Dialog Utterances
- arxiv url: http://arxiv.org/abs/2403.14808v1
- Date: Thu, 21 Mar 2024 19:46:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 19:16:32.952004
- Title: A Collection of Pragmatic-Similarity Judgments over Spoken Dialog Utterances
- Title(参考訳): 音声対話における実用的類似性判断の収集
- Authors: Nigel G. Ward, Divette Marco,
- Abstract要約: 我々は,発話対間の現実的類似性に関する人間の判断の最初のコレクションを開発する。
各ペアは、記録されたダイアログから抽出された発話と、その発話の再実行から構成された。
ジャッジ間の平均相関は英語が0.72、スペイン語が0.66であった。
- 参考スコア(独自算出の注目度): 2.094821665776961
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automatic measures of similarity between utterances are invaluable for training speech synthesizers, evaluating machine translation, and assessing learner productions. While there exist measures for semantic similarity and prosodic similarity, there are as yet none for pragmatic similarity. To enable the training of such measures, we developed the first collection of human judgments of pragmatic similarity between utterance pairs. Each pair consisting of an utterance extracted from a recorded dialog and a re-enactment of that utterance. Re-enactments were done under various conditions designed to create a variety of degrees of similarity. Each pair was rated on a continuous scale by 6 to 9 judges. The average inter-judge correlation was as high as 0.72 for English and 0.66 for Spanish. We make this data available at https://github.com/divettemarco/PragSim .
- Abstract(参考訳): 発話間の類似度の自動測定は、音声合成器の訓練、機械翻訳の評価、学習者生成の評価に有用である。
意味的類似性や韻律的類似性に関する尺度は存在するが、実用的類似性については未だ存在しない。
このような対策の訓練を可能にするために,発話対の実用的類似性の人的判断の最初のコレクションを開発した。
各ペアは、記録されたダイアログから抽出された発話と、その発話の再現からなる。
再現は様々な条件の下で行われ、様々な類似性を生み出した。
各ペアは6から9人の審査員によって連続的に評価された。
ジャッジ間の平均相関は英語が0.72、スペイン語が0.66であった。
このデータはhttps://github.com/divettemarco/PragSimで公開しています。
関連論文リスト
- DenoSent: A Denoising Objective for Self-Supervised Sentence
Representation Learning [59.4644086610381]
本稿では,他の視点,すなわち文内視点から継承する新たな認知的目的を提案する。
離散ノイズと連続ノイズの両方を導入することで、ノイズの多い文を生成し、モデルを元の形式に復元するように訓練する。
我々の経験的評価は,本手法が意味的テキスト類似性(STS)と幅広い伝達タスクの両面で競合する結果をもたらすことを示した。
論文 参考訳(メタデータ) (2024-01-24T17:48:45Z) - RankCSE: Unsupervised Sentence Representations Learning via Learning to
Rank [54.854714257687334]
本稿では,教師なし文表現学習のための新しい手法であるRangCSEを提案する。
コントラスト学習を伴うランキング一貫性とランキング蒸留を統一された枠組みに組み込む。
セマンティックテキスト類似性(STS)と転送タスク(TR)の両方について、広範な実験が実施されている。
論文 参考訳(メタデータ) (2023-05-26T08:27:07Z) - Towards Unsupervised Recognition of Token-level Semantic Differences in
Related Documents [61.63208012250885]
意味的差異をトークンレベルの回帰タスクとして認識する。
マスク付き言語モデルに依存する3つの教師なしアプローチについて検討する。
その結果,単語アライメントと文レベルのコントラスト学習に基づくアプローチは,ゴールドラベルと強い相関関係があることが示唆された。
論文 参考訳(メタデータ) (2023-05-22T17:58:04Z) - Similarity between Units of Natural Language: The Transition from Coarse
to Fine Estimation [0.0]
人間の言語ユニット間の類似性を捉えることは、人間がどう異なる物体を関連づけるかを説明するのに不可欠です。
この論文における私の研究目標は、より洗練された方法で言語単位間の類似性を考慮した回帰モデルを開発することです。
論文 参考訳(メタデータ) (2022-10-25T18:54:32Z) - Automatic Evaluation of Speaker Similarity [0.0]
本研究では,人間の知覚スコアと一致した話者類似度評価のための新しい自動評価手法を提案する。
実験の結果, 話者埋め込みから話者類似度MUSHRAスコアを0.96精度で予測し, 発話レベルでは0.78ピアソンスコアまで有意な相関関係を示すことができることがわかった。
論文 参考訳(メタデータ) (2022-07-01T11:23:16Z) - The ParlaSent-BCS dataset of sentiment-annotated parliamentary debates
from Bosnia-Herzegovina, Croatia, and Serbia [0.0]
本稿では、政治談話における感情の極性を検出するために注釈付き文のデータセットを用いて、議会討論に関する新たな研究の枠組みを付け加える。
我々は、クロアチア、ボスニア・ヘルツェゴビナ、セルビアの3つの南東ヨーロッパの議会の手続きから、アノテーションの文をサンプリングした。
データセットの初期実験では、トランスフォーマーモデルの方が、より単純なアーキテクチャを使用するモデルよりもはるかに優れた性能を示している。
論文 参考訳(メタデータ) (2022-06-02T08:45:14Z) - Attributable Visual Similarity Learning [90.69718495533144]
本稿では、画像間のより正確で説明可能な類似度測定のための帰属的視覚類似度学習(AVSL)フレームワークを提案する。
人間の意味的類似性認知に動機づけられた2つの画像とグラフとの類似性を表現するために,一般化された類似性学習パラダイムを提案する。
CUB-200-2011、Cars196、Stanford Online Productsデータセットの実験は、既存の深い類似性学習方法よりも大幅に改善されたことを示している。
論文 参考訳(メタデータ) (2022-03-28T17:35:31Z) - MNet-Sim: A Multi-layered Semantic Similarity Network to Evaluate
Sentence Similarity [0.0]
類似性(英: similarity)は、それが考慮される領域によって異なる比較目的測度である。
本稿では,複数の類似度に基づく多層意味類似性ネットワークモデルを提案する。
その結果, 文類似性の評価において, 性能スコアが向上していることが判明した。
論文 参考訳(メタデータ) (2021-11-09T20:43:18Z) - A Neural Network-Based Linguistic Similarity Measure for Entrainment in
Conversations [12.052672647509732]
言語訓練は、人々が会話でお互いを模倣する傾向がある現象である。
現在の類似度尺度のほとんどは、back-of-wordsアプローチに基づいている。
本稿では,ニューラルネットワークモデルを用いて,運動の類似度を測定することを提案する。
論文 参考訳(メタデータ) (2021-09-04T19:48:17Z) - Predicting the Humorousness of Tweets Using Gaussian Process Preference
Learning [56.18809963342249]
本稿では,人間の嗜好判断と言語アノテーションの自動生成を利用して,短文のユーモラスさのランク付けと評価を学習する確率論的アプローチを提案する。
本研究は, HAHA@IberLEF 2019データにおける数値スコアの変換と, 提案手法に必要な判定アノテーションの相互変換から生じる問題点について報告する。
論文 参考訳(メタデータ) (2020-08-03T13:05:42Z) - Learning an Unreferenced Metric for Online Dialogue Evaluation [53.38078951628143]
本稿では,大規模な事前学習言語モデルを用いて発話の潜在表現を抽出する非参照自動評価指標を提案する。
提案手法は,オンライン環境でのアノテーションと高い相関性を実現すると同時に,推論時に比較に真の応答を必要としないことを示す。
論文 参考訳(メタデータ) (2020-05-01T20:01:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。