VidLA: Video-Language Alignment at Scale
- URL: http://arxiv.org/abs/2403.14870v1
- Date: Thu, 21 Mar 2024 22:36:24 GMT
- Title: VidLA: Video-Language Alignment at Scale
- Authors: Mamshad Nayeem Rizve, Fan Fei, Jayakrishnan Unnikrishnan, Son Tran, Benjamin Z. Yao, Belinda Zeng, Mubarak Shah, Trishul Chilimbi,
- Abstract summary: We propose VidLA, an approach for video-language alignment at scale.
Our proposed approach surpasses state-of-the-art methods on multiple retrieval benchmarks.
- Score: 48.665918882615195
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose VidLA, an approach for video-language alignment at scale. There are two major limitations of previous video-language alignment approaches. First, they do not capture both short-range and long-range temporal dependencies and typically employ complex hierarchical deep network architectures that are hard to integrate with existing pretrained image-text foundation models. To effectively address this limitation, we instead keep the network architecture simple and use a set of data tokens that operate at different temporal resolutions in a hierarchical manner, accounting for the temporally hierarchical nature of videos. By employing a simple two-tower architecture, we are able to initialize our video-language model with pretrained image-text foundation models, thereby boosting the final performance. Second, existing video-language alignment works struggle due to the lack of semantically aligned large-scale training data. To overcome it, we leverage recent LLMs to curate the largest video-language dataset to date with better visual grounding. Furthermore, unlike existing video-text datasets which only contain short clips, our dataset is enriched with video clips of varying durations to aid our temporally hierarchical data tokens in extracting better representations at varying temporal scales. Overall, empirical results show that our proposed approach surpasses state-of-the-art methods on multiple retrieval benchmarks, especially on longer videos, and performs competitively on classification benchmarks.
Related papers
- Training-free Video Temporal Grounding using Large-scale Pre-trained Models [41.71055776623368]
Video temporal grounding aims to identify video segments within untrimmed videos that are most relevant to a given natural language query.
Existing video temporal localization models rely on specific datasets for training and have high data collection costs.
We propose a Training-Free Video Temporal Grounding approach that leverages the ability of pre-trained large models.
arXiv Detail & Related papers (2024-08-29T02:25:12Z) - Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
Video pre-training is challenging due to the modeling of its dynamics video.
In this paper, we address such limitations in video pre-training with an efficient video decomposition.
Our framework is both capable of comprehending and generating image and video content, as demonstrated by its performance across 13 multimodal benchmarks.
arXiv Detail & Related papers (2024-02-05T16:30:49Z) - A Simple Recipe for Contrastively Pre-training Video-First Encoders
Beyond 16 Frames [54.90226700939778]
We build on the common paradigm of transferring large-scale, image--text models to video via shallow temporal fusion.
We expose two limitations to the approach: (1) decreased spatial capabilities, likely due to poor video--language alignment in standard video datasets, and (2) higher memory consumption, bottlenecking the number of frames that can be processed.
arXiv Detail & Related papers (2023-12-12T16:10:19Z) - UnLoc: A Unified Framework for Video Localization Tasks [82.59118972890262]
UnLoc is a new approach for temporal localization in untrimmed videos.
It uses pretrained image and text towers, and feeds tokens to a video-text fusion model.
We achieve state of the art results on all three different localization tasks with a unified approach.
arXiv Detail & Related papers (2023-08-21T22:15:20Z) - Temporal Perceiving Video-Language Pre-training [112.1790287726804]
This work introduces a novel text-video localization pre-text task to enable fine-grained temporal and semantic alignment.
Specifically, text-video localization consists of moment retrieval, which predicts start and end boundaries in videos given the text description.
Our method connects the fine-grained frame representations with the word representations and implicitly distinguishes representations of different instances in the single modality.
arXiv Detail & Related papers (2023-01-18T12:15:47Z) - HierVL: Learning Hierarchical Video-Language Embeddings [108.77600799637172]
HierVL is a novel hierarchical video-language embedding that simultaneously accounts for both long-term and short-term associations.
We introduce a hierarchical contrastive training objective that encourages text-visual alignment at both the clip level and video level.
Our hierarchical scheme yields a clip representation that outperforms its single-level counterpart as well as a long-term video representation that achieves SotA.
arXiv Detail & Related papers (2023-01-05T21:53:19Z) - Long-Form Video-Language Pre-Training with Multimodal Temporal
Contrastive Learning [39.80936685227549]
Large-scale video-language pre-training has shown significant improvement in video-language understanding tasks.
We introduce a Long-Form VIdeo-LAnguage pre-training model (VILA) and train it on a large-scale long-form video and paragraph dataset.
We fine-tune the model on seven downstream long-form video-language understanding tasks, achieve new state-of-the-art performances.
arXiv Detail & Related papers (2022-10-12T09:08:27Z) - CLIP2Video: Mastering Video-Text Retrieval via Image CLIP [13.270902407320005]
We present CLIP2Video network to transfer the image-language training model to video-text retrieval in an end-to-end manner.
We conduct thorough ablation studies, and achieve state-of-the-art performance on text-to-video and video-to-text retrieval benchmarks.
arXiv Detail & Related papers (2021-06-21T13:30:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.