Training-free Video Temporal Grounding using Large-scale Pre-trained Models
- URL: http://arxiv.org/abs/2408.16219v1
- Date: Thu, 29 Aug 2024 02:25:12 GMT
- Title: Training-free Video Temporal Grounding using Large-scale Pre-trained Models
- Authors: Minghang Zheng, Xinhao Cai, Qingchao Chen, Yuxin Peng, Yang Liu,
- Abstract summary: Video temporal grounding aims to identify video segments within untrimmed videos that are most relevant to a given natural language query.
Existing video temporal localization models rely on specific datasets for training and have high data collection costs.
We propose a Training-Free Video Temporal Grounding approach that leverages the ability of pre-trained large models.
- Score: 41.71055776623368
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Video temporal grounding aims to identify video segments within untrimmed videos that are most relevant to a given natural language query. Existing video temporal localization models rely on specific datasets for training and have high data collection costs, but they exhibit poor generalization capability under the across-dataset and out-of-distribution (OOD) settings. In this paper, we propose a Training-Free Video Temporal Grounding (TFVTG) approach that leverages the ability of pre-trained large models. A naive baseline is to enumerate proposals in the video and use the pre-trained visual language models (VLMs) to select the best proposal according to the vision-language alignment. However, most existing VLMs are trained on image-text pairs or trimmed video clip-text pairs, making it struggle to (1) grasp the relationship and distinguish the temporal boundaries of multiple events within the same video; (2) comprehend and be sensitive to the dynamic transition of events (the transition from one event to another) in the video. To address these issues, we propose leveraging large language models (LLMs) to analyze multiple sub-events contained in the query text and analyze the temporal order and relationships between these events. Secondly, we split a sub-event into dynamic transition and static status parts and propose the dynamic and static scoring functions using VLMs to better evaluate the relevance between the event and the description. Finally, for each sub-event description, we use VLMs to locate the top-k proposals and leverage the order and relationships between sub-events provided by LLMs to filter and integrate these proposals. Our method achieves the best performance on zero-shot video temporal grounding on Charades-STA and ActivityNet Captions datasets without any training and demonstrates better generalization capabilities in cross-dataset and OOD settings.
Related papers
- VidLA: Video-Language Alignment at Scale [48.665918882615195]
We propose VidLA, an approach for video-language alignment at scale.
Our proposed approach surpasses state-of-the-art methods on multiple retrieval benchmarks.
arXiv Detail & Related papers (2024-03-21T22:36:24Z) - Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
Video pre-training is challenging due to the modeling of its dynamics video.
In this paper, we address such limitations in video pre-training with an efficient video decomposition.
Our framework is both capable of comprehending and generating image and video content, as demonstrated by its performance across 13 multimodal benchmarks.
arXiv Detail & Related papers (2024-02-05T16:30:49Z) - VidCoM: Fast Video Comprehension through Large Language Models with Multimodal Tools [44.78291853329394]
textbfVidCoM is a fast adaptive framework that leverages Large Language Models (LLMs) to reason about videos using lightweight visual tools.
An InsOVER algorithm locates the corresponding video events based on an efficient Hungarian matching between decompositions of linguistic instructions and video events.
arXiv Detail & Related papers (2023-10-16T17:05:56Z) - STOA-VLP: Spatial-Temporal Modeling of Object and Action for
Video-Language Pre-training [30.16501510589718]
We propose a pre-training framework that jointly models object and action information across spatial and temporal dimensions.
We design two auxiliary tasks to better incorporate both kinds of information into the pre-training process of the video-language model.
arXiv Detail & Related papers (2023-02-20T03:13:45Z) - HierVL: Learning Hierarchical Video-Language Embeddings [108.77600799637172]
HierVL is a novel hierarchical video-language embedding that simultaneously accounts for both long-term and short-term associations.
We introduce a hierarchical contrastive training objective that encourages text-visual alignment at both the clip level and video level.
Our hierarchical scheme yields a clip representation that outperforms its single-level counterpart as well as a long-term video representation that achieves SotA.
arXiv Detail & Related papers (2023-01-05T21:53:19Z) - HiTeA: Hierarchical Temporal-Aware Video-Language Pre-training [49.52679453475878]
We propose a Temporal-Aware video-language pre-training framework, HiTeA, for modeling cross-modal alignment between moments and texts.
We achieve state-of-the-art results on 15 well-established video-language understanding and generation tasks.
arXiv Detail & Related papers (2022-12-30T04:27:01Z) - Align and Prompt: Video-and-Language Pre-training with Entity Prompts [111.23364631136339]
Video-and-language pre-training has shown promising improvements on various downstream tasks.
We propose Align and Prompt: an efficient and effective video-and-language pre-training framework with better cross-modal alignment.
Our code and pre-trained models will be released.
arXiv Detail & Related papers (2021-12-17T15:55:53Z) - CLIP-It! Language-Guided Video Summarization [96.69415453447166]
This work introduces CLIP-It, a single framework for addressing both generic and query-focused video summarization.
We propose a language-guided multimodal transformer that learns to score frames in a video based on their importance relative to one another.
Our model can be extended to the unsupervised setting by training without ground-truth supervision.
arXiv Detail & Related papers (2021-07-01T17:59:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.