論文の概要: Web-based Melanoma Detection
- arxiv url: http://arxiv.org/abs/2403.14898v1
- Date: Fri, 22 Mar 2024 01:04:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 18:57:02.135474
- Title: Web-based Melanoma Detection
- Title(参考訳): Web によるメラノーマ検出
- Authors: SangHyuk Kim, Edward Gaibor, Daniel Haehn,
- Abstract要約: 本研究では,11のデータセットと24の最先端ディープラーニングアーキテクチャを組み合わせた54の組み合わせをサポートする統一メラノーマ分類手法を提案する。
1,296の実験を公平に比較することができ、その結果、Mela-Dという名前のWebベースのMeshNetアーキテクチャにデプロイ可能な軽量モデルが実現される。
このアプローチはパラメータを24倍にすることで最大33倍高速に実行でき、それ以前の画像ではResNet50に匹敵する88.8%の精度が得られる。
- 参考スコア(独自算出の注目度): 2.28377305076043
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Melanoma is the most aggressive form of skin cancer, and early detection can significantly increase survival rates and prevent cancer spread. However, developing reliable automated detection techniques is difficult due to the lack of standardized datasets and evaluation methods. This study introduces a unified melanoma classification approach that supports 54 combinations of 11 datasets and 24 state-of-the-art deep learning architectures. It enables a fair comparison of 1,296 experiments and results in a lightweight model deployable to the web-based MeshNet architecture named Mela-D. This approach can run up to 33x faster by reducing parameters 24x to yield an analogous 88.8\% accuracy comparable with ResNet50 on previously unseen images. This allows efficient and accurate melanoma detection in real-world settings that can run on consumer-level hardware.
- Abstract(参考訳): メラノーマは皮膚がんの最も攻撃的な形態であり、早期発見は生存率を大幅に増加させ、がんの拡散を防ぐことができる。
しかし、標準化されたデータセットや評価方法が欠如しているため、信頼性の高い自動検出技術の開発は困難である。
本研究では,11のデータセットと24の最先端ディープラーニングアーキテクチャを組み合わせた54の組み合わせをサポートする統一メラノーマ分類手法を提案する。
1,296の実験を公平に比較することができ、その結果、Mela-Dという名前のWebベースのMeshNetアーキテクチャにデプロイ可能な軽量モデルが実現される。
このアプローチはパラメータを24倍にすることで最大33倍高速に実行でき、以前の未確認画像ではResNet50に匹敵する88.8\%の精度が得られる。
これにより、コンシューマレベルのハードウェア上で実行可能な実世界の環境において、効率的かつ正確なメラノーマ検出が可能になる。
関連論文リスト
- Towards a Benchmark for Colorectal Cancer Segmentation in Endorectal Ultrasound Videos: Dataset and Model Development [59.74920439478643]
本稿では,多様なERUSシナリオをカバーする最初のベンチマークデータセットを収集し,注釈付けする。
ERUS-10Kデータセットは77の動画と10,000の高解像度アノテートフレームで構成されています。
本稿では,ASTR (Adaptive Sparse-context TRansformer) という大腸癌セグメンテーションのベンチマークモデルを提案する。
論文 参考訳(メタデータ) (2024-08-19T15:04:42Z) - Hybrid Deep Learning Framework for Enhanced Melanoma Detection [3.004788114489393]
本研究の目的は, メラノーマ検出の精度と効率を, 革新的なハイブリッドアプローチにより向上させることである。
我々は、HAM10000データセットを使用して、U-Netモデルを綿密に訓練し、癌領域を正確に分類することができる。
我々はISIC 2020データセットを用いてEfficientNetモデルをトレーニングし、皮膚がんのバイナリ分類に最適化する。
論文 参考訳(メタデータ) (2024-07-16T04:58:47Z) - Robust Melanoma Thickness Prediction via Deep Transfer Learning enhanced by XAI Techniques [39.97900702763419]
本研究は,メラノーマの深さを測定するために皮膚内視鏡像の解析に焦点をあてる。
顆粒層の上部から腫瘍浸潤の最も深い地点まで測定されたブレスロー深さは、黒色腫のステージングと治療決定の指針となる重要なパラメータである。
ISICやプライベートコレクションを含むさまざまなデータセットが使用され、合計で1162枚の画像が含まれている。
その結果, 従来の手法に比べて, モデルが大幅に改善された。
論文 参考訳(メタデータ) (2024-06-19T11:07:55Z) - Diagnosis of Skin Cancer Using VGG16 and VGG19 Based Transfer Learning Models [0.6827423171182154]
ディープ畳み込みニューラルネットワーク(CNN)は、データと画像の分類に優れた可能性を示している。
本稿では,CNNを用いた皮膚病変分類問題について検討する。
本研究では, 転写学習の枠組みを適切に設計し, 適用することにより, 病変検出の顕著な分類精度を得ることができることを示す。
論文 参考訳(メタデータ) (2024-04-01T15:06:20Z) - A Comparative Analysis Towards Melanoma Classification Using Transfer
Learning by Analyzing Dermoscopic Images [0.0]
本稿では,皮膚病変の分類と診断を可能にするために,深層学習技術と確立された転写学習手法を組み合わせたシステムを提案する。
研究者たちは'Deep Learning'テクニックを使って、膨大な数の写真を訓練し、基本的には期待される結果を得る。
DenseNetは、96.64%のバリデーション精度、9.43%のバリデーション損失、99.63%のテストセット精度など、他のものよりも優れていた。
論文 参考訳(メタデータ) (2023-12-02T19:46:48Z) - Melanoma Skin Cancer and Nevus Mole Classification using Intensity Value
Estimation with Convolutional Neural Network [0.0]
メラノーマ皮膚がんは最も危険で致命的ながんの一つである。
紫外線への曝露は皮膚細胞のDNAを損傷し、メラノーマ皮膚がんを引き起こす。
未熟期の悪性黒色腫とnevus moleの検出・分類は困難である。
論文 参考訳(メタデータ) (2022-09-30T13:35:24Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - A Clinically Inspired Approach for Melanoma classification [3.2188961353850187]
メラノーマは皮膚がんによる死因の1つである。
メラノーマの診断における最近のアプローチはパターン認識か分析的認識である。
実際には、外れ値が検出され、ネビ/レセオンを評価するために使用される差分アプローチである。
論文 参考訳(メタデータ) (2021-06-15T10:12:24Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
前立腺癌(PCa)は、2020年に約141万件の新規感染者と約37万5000人の死者を出した男性の死因の1つである。
自動診断を行うには、まず前立腺組織サンプルをギガピクセル分解能全スライド画像にデジタイズする。
パッチと呼ばれる小さなサブイメージが抽出され、予測され、パッチレベルの分類が得られる。
論文 参考訳(メタデータ) (2021-05-20T18:13:58Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Melanoma Diagnosis with Spatio-Temporal Feature Learning on Sequential
Dermoscopic Images [40.743870665742975]
悪性黒色腫自動診断のための既存の皮膚科医は、病変の単一点像に基づいている。
そこで本研究では,連続した皮膚内視鏡像を用いたメラノーマ診断のための自動フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-19T04:08:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。