Snail: Secure Single Iteration Localization
- URL: http://arxiv.org/abs/2403.14916v2
- Date: Tue, 26 Mar 2024 22:09:58 GMT
- Title: Snail: Secure Single Iteration Localization
- Authors: James Choncholas, Pujith Kachana, André Mateus, Gregoire Phillips, Ada Gavrilovska,
- Abstract summary: localization is a computer vision task by which the position and orientation of a camera is determined from an image and environmental map.
We present two approaches to localization, a baseline data-oblivious adaptation of localization suitable for garbled circuits and our novel Single Iteration localization.
- Score: 2.708816087833581
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Localization is a computer vision task by which the position and orientation of a camera is determined from an image and environmental map. We propose a method for performing localization in a privacy preserving manner supporting two scenarios: first, when the image and map are held by a client who wishes to offload localization to untrusted third parties, and second, when the image and map are held separately by untrusting parties. Privacy preserving localization is necessary when the image and map are confidential, and offloading conserves on-device power and frees resources for other tasks. To accomplish this we integrate existing localization methods and secure multi-party computation (MPC), specifically garbled circuits, yielding proof-based security guarantees in contrast to existing obfuscation-based approaches which recent related work has shown vulnerable. We present two approaches to localization, a baseline data-oblivious adaptation of localization suitable for garbled circuits and our novel Single Iteration Localization. Our technique improves overall performance while maintaining confidentiality of the input image, map, and output pose at the expense of increased communication rounds but reduced computation and communication required per round. Single Iteration Localization is over two orders of magnitude faster than a straightforward application of garbled circuits to localization enabling real-world usage in the first robot to offload localization without revealing input images, environmental map, position, or orientation to offload servers.
Related papers
- Learning Where to Look: Self-supervised Viewpoint Selection for Active Localization using Geometrical Information [68.10033984296247]
This paper explores the domain of active localization, emphasizing the importance of viewpoint selection to enhance localization accuracy.
Our contributions involve using a data-driven approach with a simple architecture designed for real-time operation, a self-supervised data training method, and the capability to consistently integrate our map into a planning framework tailored for real-world robotics applications.
arXiv Detail & Related papers (2024-07-22T12:32:09Z) - Privacy-Preserving Representations are not Enough -- Recovering Scene
Content from Camera Poses [63.12979986351964]
Existing work on privacy-preserving localization aims to defend against an attacker who has access to a cloud-based service.
We show that an attacker can learn about details of a scene without any access by simply querying a localization service.
arXiv Detail & Related papers (2023-05-08T10:25:09Z) - Global and Local Alignment Networks for Unpaired Image-to-Image
Translation [170.08142745705575]
The goal of unpaired image-to-image translation is to produce an output image reflecting the target domain's style.
Due to the lack of attention to the content change in existing methods, semantic information from source images suffers from degradation during translation.
We introduce a novel approach, Global and Local Alignment Networks (GLA-Net)
Our method effectively generates sharper and more realistic images than existing approaches.
arXiv Detail & Related papers (2021-11-19T18:01:54Z) - Deep Metric Learning for Ground Images [4.864819846886142]
We deal with the initial localization task, in which we have no prior knowledge about the current robot positioning.
We propose a deep metric learning approach that retrieves the most similar reference images to the query image.
In contrast to existing approaches to image retrieval for ground images, our approach achieves significantly better recall performance and improves the localization performance of a state-of-the-art ground texture based localization method.
arXiv Detail & Related papers (2021-09-03T14:43:59Z) - Cross-Descriptor Visual Localization and Mapping [81.16435356103133]
Visual localization and mapping is the key technology underlying the majority of Mixed Reality and robotics systems.
We present three novel scenarios for localization and mapping which require the continuous update of feature representations.
Our data-driven approach is agnostic to the feature descriptor type, has low computational requirements, and scales linearly with the number of description algorithms.
arXiv Detail & Related papers (2020-12-02T18:19:51Z) - Unsupervised Metric Relocalization Using Transform Consistency Loss [66.19479868638925]
Training networks to perform metric relocalization traditionally requires accurate image correspondences.
We propose a self-supervised solution, which exploits a key insight: localizing a query image within a map should yield the same absolute pose, regardless of the reference image used for registration.
We evaluate our framework on synthetic and real-world data, showing our approach outperforms other supervised methods when a limited amount of ground-truth information is available.
arXiv Detail & Related papers (2020-11-01T19:24:27Z) - Zero-Shot Multi-View Indoor Localization via Graph Location Networks [66.05980368549928]
indoor localization is a fundamental problem in location-based applications.
We propose a novel neural network based architecture Graph Location Networks (GLN) to perform infrastructure-free, multi-view image based indoor localization.
GLN makes location predictions based on robust location representations extracted from images through message-passing networks.
We introduce a novel zero-shot indoor localization setting and tackle it by extending the proposed GLN to a dedicated zero-shot version.
arXiv Detail & Related papers (2020-08-06T07:36:55Z) - Ground Texture Based Localization Using Compact Binary Descriptors [12.160708336715489]
Ground texture based localization is a promising approach to achieve high-accuracy positioning of vehicles.
We present a self-contained method that can be used for global localization as well as for subsequent local localization updates.
arXiv Detail & Related papers (2020-02-25T17:31:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.