"The Law Doesn't Work Like a Computer": Exploring Software Licensing Issues Faced by Legal Practitioners
- URL: http://arxiv.org/abs/2403.14927v1
- Date: Fri, 22 Mar 2024 03:07:11 GMT
- Title: "The Law Doesn't Work Like a Computer": Exploring Software Licensing Issues Faced by Legal Practitioners
- Authors: Nathan Wintersgill, Trevor Stalnaker, Laura A. Heymann, Oscar Chaparro, Denys Poshyvanyk,
- Abstract summary: We conducted a survey with 30 legal practitioners and related occupations.
We identified different aspects of OSS license compliance from the perspective of legal practitioners.
We discuss the implications of our findings.
- Score: 7.323456975282423
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most modern software products incorporate open source components, which requires compliance with each component's licenses. As noncompliance can lead to significant repercussions, organizations often seek advice from legal practitioners to maintain license compliance, address licensing issues, and manage the risks of noncompliance. While legal practitioners play a critical role in the process, little is known in the software engineering community about their experiences within the open source license compliance ecosystem. To fill this knowledge gap, a joint team of software engineering and legal researchers designed and conducted a survey with 30 legal practitioners and related occupations and then held 16 follow-up interviews. We identified different aspects of OSS license compliance from the perspective of legal practitioners, resulting in 14 key findings in three main areas of interest: the general ecosystem of compliance, the specific compliance practices of legal practitioners, and the challenges that legal practitioners face. We discuss the implications of our findings.
Related papers
- Metamorphic Debugging for Accountable Software [8.001739956625483]
Translating legalese into formal specifications is one challenge.
Lack of a definitive 'truth' for queries (the oracle problem) is another.
We propose that these challenges can be tackled by focusing on relational specifications.
arXiv Detail & Related papers (2024-09-24T14:45:13Z) - LeKUBE: A Legal Knowledge Update BEnchmark [30.62956609611883]
How to update the legal knowledge of Large Language Models (LLMs) has become an important research problem in practice.
Existing benchmarks for evaluating knowledge update methods are mostly designed for the open domain.
We introduce the Legal Knowledge Update BEnchmark, i.e. LeKUBE, which evaluates knowledge update methods for legal LLMs across five dimensions.
arXiv Detail & Related papers (2024-07-19T10:40:10Z) - InternLM-Law: An Open Source Chinese Legal Large Language Model [72.2589401309848]
InternLM-Law is a specialized LLM tailored for addressing diverse legal queries related to Chinese laws.
We meticulously construct a dataset in the Chinese legal domain, encompassing over 1 million queries.
InternLM-Law achieves the highest average performance on LawBench, outperforming state-of-the-art models, including GPT-4, on 13 out of 20 subtasks.
arXiv Detail & Related papers (2024-06-21T06:19:03Z) - Catch the Butterfly: Peeking into the Terms and Conflicts among SPDX
Licenses [16.948633594354412]
Third-party libraries (TPLs) in software development has accelerated the creation of modern software.
Developers may inadvertently violate the licenses of TPLs, leading to legal issues.
There is a need for a high-quality license dataset that encompasses a broad range of mainstream licenses.
arXiv Detail & Related papers (2024-01-19T11:27:34Z) - Report of the 1st Workshop on Generative AI and Law [78.62063815165968]
This report presents the takeaways of the inaugural Workshop on Generative AI and Law (GenLaw)
A cross-disciplinary group of practitioners and scholars from computer science and law convened to discuss the technical, doctrinal, and policy challenges presented by law for Generative AI.
arXiv Detail & Related papers (2023-11-11T04:13:37Z) - A Comprehensive Evaluation of Large Language Models on Legal Judgment
Prediction [60.70089334782383]
Large language models (LLMs) have demonstrated great potential for domain-specific applications.
Recent disputes over GPT-4's law evaluation raise questions concerning their performance in real-world legal tasks.
We design practical baseline solutions based on LLMs and test on the task of legal judgment prediction.
arXiv Detail & Related papers (2023-10-18T07:38:04Z) - LAiW: A Chinese Legal Large Language Models Benchmark [17.66376880475554]
General and legal domain LLMs have demonstrated strong performance in various tasks of LegalAI.
We are the first to build the Chinese legal LLMs benchmark LAiW, based on the logic of legal practice.
arXiv Detail & Related papers (2023-10-09T11:19:55Z) - LegalBench: A Collaboratively Built Benchmark for Measuring Legal
Reasoning in Large Language Models [15.98468948605927]
LegalBench is a benchmark consisting of 162 tasks covering six different types of legal reasoning.
This paper describes LegalBench, presents an empirical evaluation of 20 open-source and commercial LLMs, and illustrates the types of research explorations LegalBench enables.
arXiv Detail & Related papers (2023-08-20T22:08:03Z) - SAILER: Structure-aware Pre-trained Language Model for Legal Case
Retrieval [75.05173891207214]
Legal case retrieval plays a core role in the intelligent legal system.
Most existing language models have difficulty understanding the long-distance dependencies between different structures.
We propose a new Structure-Aware pre-traIned language model for LEgal case Retrieval.
arXiv Detail & Related papers (2023-04-22T10:47:01Z) - Lawformer: A Pre-trained Language Model for Chinese Legal Long Documents [56.40163943394202]
We release the Longformer-based pre-trained language model, named as Lawformer, for Chinese legal long documents understanding.
We evaluate Lawformer on a variety of LegalAI tasks, including judgment prediction, similar case retrieval, legal reading comprehension, and legal question answering.
arXiv Detail & Related papers (2021-05-09T09:39:25Z) - How Does NLP Benefit Legal System: A Summary of Legal Artificial
Intelligence [81.04070052740596]
Legal Artificial Intelligence (LegalAI) focuses on applying the technology of artificial intelligence, especially natural language processing, to benefit tasks in the legal domain.
This paper introduces the history, the current state, and the future directions of research in LegalAI.
arXiv Detail & Related papers (2020-04-25T14:45:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.