From Legal Text to Tech Specs: Generative AI's Interpretation of Consent in Privacy Law
- URL: http://arxiv.org/abs/2507.04185v1
- Date: Sat, 05 Jul 2025 23:36:05 GMT
- Title: From Legal Text to Tech Specs: Generative AI's Interpretation of Consent in Privacy Law
- Authors: Aniket Kesari, Travis Breaux, Tom Norton, Sarah Santos, Anmol Singhal,
- Abstract summary: This study employs a three-step pipeline that involves using an LLM to classify software use cases for compliance.<n>By benchmarking LLMs against real-world use cases, this research provides insights into leveraging AI-driven solutions to enhance legal compliance of software.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Privacy law and regulation have turned to "consent" as the legitimate basis for collecting and processing individuals' data. As governments have rushed to enshrine consent requirements in their privacy laws, such as the California Consumer Privacy Act (CCPA), significant challenges remain in understanding how these legal mandates are operationalized in software. The opaque nature of software development processes further complicates this translation. To address this, we explore the use of Large Language Models (LLMs) in requirements engineering to bridge the gap between legal requirements and technical implementation. This study employs a three-step pipeline that involves using an LLM to classify software use cases for compliance, generating LLM modifications for non-compliant cases, and manually validating these changes against legal standards. Our preliminary findings highlight the potential of LLMs in automating compliance tasks, while also revealing limitations in their reasoning capabilities. By benchmarking LLMs against real-world use cases, this research provides insights into leveraging AI-driven solutions to enhance legal compliance of software.
Related papers
- LegalAgentBench: Evaluating LLM Agents in Legal Domain [53.70993264644004]
LegalAgentBench is a benchmark specifically designed to evaluate LLM Agents in the Chinese legal domain.<n>LegalAgentBench includes 17 corpora from real-world legal scenarios and provides 37 tools for interacting with external knowledge.
arXiv Detail & Related papers (2024-12-23T04:02:46Z) - Metamorphic Debugging for Accountable Software [8.001739956625483]
Translating legalese into formal specifications is one challenge.
Lack of a definitive 'truth' for queries (the oracle problem) is another.
We propose that these challenges can be tackled by focusing on relational specifications.
arXiv Detail & Related papers (2024-09-24T14:45:13Z) - LegiLM: A Fine-Tuned Legal Language Model for Data Compliance [5.256747140296861]
LegiLM is a novel legal language model specifically tailored for consulting on data or information compliance.
It has been fine-tuned to automatically assess whether particular actions or events breach data security and privacy regulations.
LegiLM excels in detecting data regulation breaches, offering sound legal justifications, and recommending necessary compliance modifications.
arXiv Detail & Related papers (2024-09-09T02:06:52Z) - InternLM-Law: An Open Source Chinese Legal Large Language Model [72.2589401309848]
InternLM-Law is a specialized LLM tailored for addressing diverse legal queries related to Chinese laws.
We meticulously construct a dataset in the Chinese legal domain, encompassing over 1 million queries.
InternLM-Law achieves the highest average performance on LawBench, outperforming state-of-the-art models, including GPT-4, on 13 out of 20 subtasks.
arXiv Detail & Related papers (2024-06-21T06:19:03Z) - A Survey on Large Language Models for Critical Societal Domains: Finance, Healthcare, and Law [65.87885628115946]
Large language models (LLMs) are revolutionizing the landscapes of finance, healthcare, and law.
We highlight the instrumental role of LLMs in enhancing diagnostic and treatment methodologies in healthcare, innovating financial analytics, and refining legal interpretation and compliance strategies.
We critically examine the ethics for LLM applications in these fields, pointing out the existing ethical concerns and the need for transparent, fair, and robust AI systems.
arXiv Detail & Related papers (2024-05-02T22:43:02Z) - Enhancing Legal Compliance and Regulation Analysis with Large Language Models [0.0]
This research explores the application of Large Language Models (LLMs) to accurately classify legal provisions and automate compliance checks.
Our findings demonstrate promising results, indicating LLMs' significant potential to enhance legal compliance and regulatory analysis efficiency, notably by reducing manual workload and improving accuracy within reasonable time financial constraints.
arXiv Detail & Related papers (2024-04-26T16:40:49Z) - Legal Requirements Analysis [2.3349787245442966]
We explore a variety of methods for analyzing legal requirements and exemplify them on representations.
We describe possible alternatives for creating machine-analyzable representations from regulations.
arXiv Detail & Related papers (2023-11-23T09:31:57Z) - A Comprehensive Evaluation of Large Language Models on Legal Judgment
Prediction [60.70089334782383]
Large language models (LLMs) have demonstrated great potential for domain-specific applications.
Recent disputes over GPT-4's law evaluation raise questions concerning their performance in real-world legal tasks.
We design practical baseline solutions based on LLMs and test on the task of legal judgment prediction.
arXiv Detail & Related papers (2023-10-18T07:38:04Z) - Precedent-Enhanced Legal Judgment Prediction with LLM and Domain-Model
Collaboration [52.57055162778548]
Legal Judgment Prediction (LJP) has become an increasingly crucial task in Legal AI.
Precedents are the previous legal cases with similar facts, which are the basis for the judgment of the subsequent case in national legal systems.
Recent advances in deep learning have enabled a variety of techniques to be used to solve the LJP task.
arXiv Detail & Related papers (2023-10-13T16:47:20Z) - LAiW: A Chinese Legal Large Language Models Benchmark [17.66376880475554]
General and legal domain LLMs have demonstrated strong performance in various tasks of LegalAI.
We are the first to build the Chinese legal LLMs benchmark LAiW, based on the logic of legal practice.
arXiv Detail & Related papers (2023-10-09T11:19:55Z) - Lawformer: A Pre-trained Language Model for Chinese Legal Long Documents [56.40163943394202]
We release the Longformer-based pre-trained language model, named as Lawformer, for Chinese legal long documents understanding.
We evaluate Lawformer on a variety of LegalAI tasks, including judgment prediction, similar case retrieval, legal reading comprehension, and legal question answering.
arXiv Detail & Related papers (2021-05-09T09:39:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.