論文の概要: Unifying Lane-Level Traffic Prediction from a Graph Structural Perspective: Benchmark and Baseline
- arxiv url: http://arxiv.org/abs/2403.14941v1
- Date: Fri, 22 Mar 2024 04:21:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 18:37:30.417992
- Title: Unifying Lane-Level Traffic Prediction from a Graph Structural Perspective: Benchmark and Baseline
- Title(参考訳): グラフ構造から見たレーンレベル交通予測の統一:ベンチマークとベースライン
- Authors: Shuhao Li, Yue Cui, Jingyi Xu, Libin Li, Lingkai Meng, Weidong Yang, Fan Zhang, Xiaofang Zhou,
- Abstract要約: 本稿では,レーンレベルの交通予測における既存研究を幅広く分析し,分類する。
グラフ構造と予測ネットワークに基づくシンプルなベースラインモデルであるGraphMLPを導入している。
既存の研究では公開されていないコードを複製し、有効性、効率、適用性の観点から様々なモデルを評価しました。
- 参考スコア(独自算出の注目度): 21.37853568400125
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traffic prediction has long been a focal and pivotal area in research, witnessing both significant strides from city-level to road-level predictions in recent years. With the advancement of Vehicle-to-Everything (V2X) technologies, autonomous driving, and large-scale models in the traffic domain, lane-level traffic prediction has emerged as an indispensable direction. However, further progress in this field is hindered by the absence of comprehensive and unified evaluation standards, coupled with limited public availability of data and code. This paper extensively analyzes and categorizes existing research in lane-level traffic prediction, establishes a unified spatial topology structure and prediction tasks, and introduces a simple baseline model, GraphMLP, based on graph structure and MLP networks. We have replicated codes not publicly available in existing studies and, based on this, thoroughly and fairly assessed various models in terms of effectiveness, efficiency, and applicability, providing insights for practical applications. Additionally, we have released three new datasets and corresponding codes to accelerate progress in this field, all of which can be found on https://github.com/ShuhaoLii/TITS24LaneLevel-Traffic-Benchmark.
- Abstract(参考訳): 交通予測は長い間研究の中心的かつ重要な領域であり、近年の都市レベルから道路レベルへの大きな進展を目撃している。
交通分野におけるV2X技術、自動運転、大規模モデルの発展に伴い、車線レベルの交通予測は必須の方向として現れてきた。
しかし、この分野のさらなる進歩は、包括的で統一された評価基準が欠如していることと、データとコードの公開が限られていることによって妨げられている。
本稿では,レーンレベルの交通予測における既存の研究を幅広く分析し,統一的な空間トポロジ構造と予測タスクを確立し,グラフ構造とMLPネットワークに基づくシンプルなベースラインモデルであるGraphMLPを導入する。
既存の研究では公開されていないコードを複製し、この結果に基づいて、有効性、効率性、適用性の観点から、さまざまなモデルを徹底的かつ公平に評価し、実用的なアプリケーションに対する洞察を提供しました。
さらに、この分野の進歩を加速するための3つの新しいデータセットと対応するコードもリリースしました。
関連論文リスト
- Strada-LLM: Graph LLM for traffic prediction [62.2015839597764]
交通予測における大きな課題は、非常に異なる交通条件によって引き起こされる多様なデータ分散を扱うことである。
近位交通情報を考慮した交通予測のためのグラフ対応LLMを提案する。
我々は、新しいデータ分散に直面する際に、ドメイン適応を効率的にするための軽量なアプローチを採用する。
論文 参考訳(メタデータ) (2024-10-28T09:19:29Z) - OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
学習可能なクエリの集合を用いて、占有された場所とクラスを同時に予測するフレームワークを提案する。
OPUSには、モデルパフォーマンスを高めるための非自明な戦略が組み込まれている。
最も軽量なモデルではOcc3D-nuScenesデータセットの2倍 FPS に優れたRayIoUが得られる一方、最も重いモデルは6.1 RayIoUを上回ります。
論文 参考訳(メタデータ) (2024-09-14T07:44:22Z) - SemanticFormer: Holistic and Semantic Traffic Scene Representation for Trajectory Prediction using Knowledge Graphs [3.733790302392792]
自動運転におけるトレイ予測は、運転シーンのすべての関連状況の正確な表現に依存している。
本稿では,交通シーングラフの推論によるマルチモーダル軌道の予測手法であるSemanticFormerを提案する。
論文 参考訳(メタデータ) (2024-04-30T09:11:04Z) - TPLLM: A Traffic Prediction Framework Based on Pretrained Large Language Models [27.306180426294784]
大規模言語モデル(LLM)を利用した新しい交通予測フレームワークであるTPLLMを紹介する。
本フレームワークでは,Lonal Neural Networks (LoCNNs) に基づくシーケンス埋め込み層と,Graph Contemporalal Networks (GCNs) に基づくグラフ埋め込み層を構築し,シーケンスの特徴と空間的特徴を抽出する。
実世界の2つのデータセットの実験では、フルサンプルと数ショットの予測シナリオの両方で、満足できるパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-03-04T17:08:57Z) - nuScenes Knowledge Graph -- A comprehensive semantic representation of
traffic scenes for trajectory prediction [6.23221362105447]
交通シーンにおける軌道予測は、周囲の車両の挙動を正確に予測する。
車両の走行経路、道路トポロジー、車線分割器、交通規則など、文脈情報を考慮することが重要である。
本稿では,知識グラフを用いて交通シーン内の多様なエンティティとその意味的関係をモデル化する手法を提案する。
論文 参考訳(メタデータ) (2023-12-15T10:40:34Z) - Is Ego Status All You Need for Open-Loop End-to-End Autonomous Driving? [84.17711168595311]
エンドツーエンドの自動運転は、フルスタックの観点から自律性を目標とする、有望な研究の方向性として浮上している。
比較的単純な駆動シナリオを特徴とするnuScenesデータセットは、エンド・ツー・エンド・モデルにおける知覚情報の未使用化につながる。
予測軌跡が道路に付着するかどうかを評価するための新しい指標を提案する。
論文 参考訳(メタデータ) (2023-12-05T11:32:31Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
軌道予測におけるデータ不足の問題を緩和するパイプラインレベルのソリューションを提案する。
我々は、駆動データを生成するためにHDマップ拡張とトラジェクトリ合成を採用し、それらを事前学習することで表現を学習する。
我々は、データ拡張と事前学習戦略の有効性を実証するための広範な実験を行う。
論文 参考訳(メタデータ) (2023-09-18T19:49:22Z) - STG4Traffic: A Survey and Benchmark of Spatial-Temporal Graph Neural Networks for Traffic Prediction [9.467593700532401]
本稿では,グラフ学習戦略と一般的なグラフ畳み込みアルゴリズムの体系的なレビューを行う。
次に、最近提案された空間時間グラフネットワークモデルの長所と短所を包括的に分析する。
ディープラーニングフレームワークPyTorchを用いたSTG4Trafficという研究を構築し,2種類のトラフィックデータセットに対して,標準化されたスケーラブルなベンチマークを確立する。
論文 参考訳(メタデータ) (2023-07-02T06:56:52Z) - Continuous-Time and Multi-Level Graph Representation Learning for
Origin-Destination Demand Prediction [52.0977259978343]
本稿では,原位置需要予測(CMOD)のための連続時間および多段階動的グラフ表現学習法を提案する。
状態ベクトルは、過去のトランザクション情報を保持し、最近発生したトランザクションに従って継続的に更新される。
北京地下鉄とニューヨークタクシーの2つの実世界のデータセットを用いて実験を行い、そのモデルが最先端のアプローチに対して優れていることを実証した。
論文 参考訳(メタデータ) (2022-06-30T03:37:50Z) - Few-Shot Traffic Prediction with Graph Networks using Locale as
Relational Inductive Biases [7.173242326298134]
多くの都市では、データ収集費用のため、利用可能なトラフィックデータの量は、最低限の要件以下である。
本稿では,グラフネットワーク(GN)に基づく深層学習モデルであるLocaleGnを開発した。
また、LocaleGnから学んだ知識が都市間で伝達可能であることも実証された。
論文 参考訳(メタデータ) (2022-03-08T09:46:50Z) - SLPC: a VRNN-based approach for stochastic lidar prediction and
completion in autonomous driving [63.87272273293804]
VRNN(Variiational Recurrent Neural Networks)と呼ばれる生成モデルに基づく新しいLiDAR予測フレームワークを提案する。
提案手法は,フレーム内の奥行きマップを空間的に塗り替えることで,スパースデータを扱う際の従来のビデオ予測フレームワークの限界に対処できる。
VRNNのスパースバージョンとラベルを必要としない効果的な自己監督型トレーニング方法を紹介します。
論文 参考訳(メタデータ) (2021-02-19T11:56:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。