Comprehensive Evaluation and Insights into the Use of Large Language Models in the Automation of Behavior-Driven Development Acceptance Test Formulation
- URL: http://arxiv.org/abs/2403.14965v1
- Date: Fri, 22 Mar 2024 05:37:52 GMT
- Title: Comprehensive Evaluation and Insights into the Use of Large Language Models in the Automation of Behavior-Driven Development Acceptance Test Formulation
- Authors: Shanthi Karpurapu, Sravanthy Myneni, Unnati Nettur, Likhit Sagar Gajja, Dave Burke, Tom Stiehm, Jeffery Payne,
- Abstract summary: We propose a novel approach to enhance BDD practices using large language models (LLMs) to automate acceptance test generation.
Our study uses zero and few-shot prompts to evaluate LLMs such as GPT-3.5, GPT-4, Llama-2-13B, and PaLM-2.
The results demonstrate that GPT-3.5 and GPT-4 generate error-free BDD acceptance tests with better performance.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Behavior-driven development (BDD) is an Agile testing methodology fostering collaboration among developers, QA analysts, and stakeholders. In this manuscript, we propose a novel approach to enhance BDD practices using large language models (LLMs) to automate acceptance test generation. Our study uses zero and few-shot prompts to evaluate LLMs such as GPT-3.5, GPT-4, Llama-2-13B, and PaLM-2. The paper presents a detailed methodology that includes the dataset, prompt techniques, LLMs, and the evaluation process. The results demonstrate that GPT-3.5 and GPT-4 generate error-free BDD acceptance tests with better performance. The few-shot prompt technique highlights its ability to provide higher accuracy by incorporating examples for in-context learning. Furthermore, the study examines syntax errors, validation accuracy, and comparative analysis of LLMs, revealing their effectiveness in enhancing BDD practices. However, our study acknowledges that there are limitations to the proposed approach. We emphasize that this approach can support collaborative BDD processes and create opportunities for future research into automated BDD acceptance test generation using LLMs.
Related papers
- Enhancing Input-Label Mapping in In-Context Learning with Contrastive Decoding [71.01099784480597]
Large language models (LLMs) excel at a range of tasks through in-context learning (ICL)
We introduce In-Context Contrastive Decoding (ICCD), a novel method that emphasizes input-label mapping.
ICCD emphasizes input-label mapping by contrasting the output distributions between positive and negative in-context examples.
arXiv Detail & Related papers (2025-02-19T14:04:46Z) - Training an LLM-as-a-Judge Model: Pipeline, Insights, and Practical Lessons [9.954960702259918]
This paper introduces Themis, a fine-tuned large language model (LLMs) judge that delivers context-aware evaluations.
We provide a comprehensive overview of the development pipeline for Themis, highlighting its scenario-dependent evaluation prompts.
We introduce two human-labeled benchmarks for meta-evaluation, demonstrating that Themis can achieve high alignment with human preferences in an economical manner.
arXiv Detail & Related papers (2025-02-05T08:35:55Z) - Automatic Evaluation for Text-to-image Generation: Task-decomposed Framework, Distilled Training, and Meta-evaluation Benchmark [62.58869921806019]
We propose a task decomposition evaluation framework based on GPT-4o to automatically construct a new training dataset.
We design innovative training strategies to effectively distill GPT-4o's evaluation capabilities into a 7B open-source MLLM, MiniCPM-V-2.6.
Experimental results demonstrate that our distilled open-source MLLM significantly outperforms the current state-of-the-art GPT-4o-base baseline.
arXiv Detail & Related papers (2024-11-23T08:06:06Z) - Exploring and Lifting the Robustness of LLM-powered Automated Program Repair with Metamorphic Testing [31.165102332393964]
Large language model-powered Automated Program Repair (LAPR) techniques have achieved state-of-the-art bug-fixing performance.
It is crucial to conduct robustness testing on LAPR techniques before their practical deployment.
We propose MT-LAPR, a Metamorphic Testing framework exclusively for LAPR techniques.
arXiv Detail & Related papers (2024-10-10T01:14:58Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
We propose a novel paradigm that uses a code-based critic model to guide steps including question-code data construction, quality control, and complementary evaluation.
Experiments across both in-domain and out-of-domain benchmarks in English and Chinese demonstrate the effectiveness of the proposed paradigm.
arXiv Detail & Related papers (2024-08-28T06:33:03Z) - Instruction Tuning with Retrieval-based Examples Ranking for Aspect-based Sentiment Analysis [7.458853474864602]
Aspect-based sentiment analysis (ABSA) identifies sentiment information related to specific aspects and provides deeper market insights to businesses and organizations.
Recent studies have proposed using fixed examples for instruction tuning to reformulate ABSA as a generation task.
This study proposes an instruction learning method with retrieval-based example ranking for ABSA tasks.
arXiv Detail & Related papers (2024-05-28T10:39:10Z) - Automating REST API Postman Test Cases Using LLM [0.0]
This research paper is dedicated to the exploration and implementation of an automated approach to generate test cases using Large Language Models.
The methodology integrates the use of Open AI to enhance the efficiency and effectiveness of test case generation.
The model that is developed during the research is trained using manually collected postman test cases or instances for various Rest APIs.
arXiv Detail & Related papers (2024-04-16T15:53:41Z) - Enhancing LLM-based Test Generation for Hard-to-Cover Branches via Program Analysis [8.31978033489419]
We propose TELPA, a novel technique to generate tests that can reach hard-to-cover branches.
Our experimental results on 27 open-source Python projects demonstrate that TELPA significantly outperforms the state-of-the-art SBST and LLM-based techniques.
arXiv Detail & Related papers (2024-04-07T14:08:28Z) - C-ICL: Contrastive In-context Learning for Information Extraction [54.39470114243744]
c-ICL is a novel few-shot technique that leverages both correct and incorrect sample constructions to create in-context learning demonstrations.
Our experiments on various datasets indicate that c-ICL outperforms previous few-shot in-context learning methods.
arXiv Detail & Related papers (2024-02-17T11:28:08Z) - Evaluating and Improving Tool-Augmented Computation-Intensive Math
Reasoning [75.74103236299477]
Chain-of-thought prompting(CoT) and tool augmentation have been validated as effective practices for improving large language models.
We propose a new approach that can deliberate the reasoning steps with tool interfaces, namely textbfDELI.
Experimental results on CARP and six other datasets show that the proposed DELI mostly outperforms competitive baselines.
arXiv Detail & Related papers (2023-06-04T17:02:59Z) - CINS: Comprehensive Instruction for Few-shot Learning in Task-oriented
Dialog Systems [56.302581679816775]
This paper proposes Comprehensive Instruction (CINS) that exploits PLMs with task-specific instructions.
We design a schema (definition, constraint, prompt) of instructions and their customized realizations for three important downstream tasks in ToD.
Experiments are conducted on these ToD tasks in realistic few-shot learning scenarios with small validation data.
arXiv Detail & Related papers (2021-09-10T03:23:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.