Tri-Perspective View Decomposition for Geometry-Aware Depth Completion
- URL: http://arxiv.org/abs/2403.15008v1
- Date: Fri, 22 Mar 2024 07:45:50 GMT
- Title: Tri-Perspective View Decomposition for Geometry-Aware Depth Completion
- Authors: Zhiqiang Yan, Yuankai Lin, Kun Wang, Yupeng Zheng, Yufei Wang, Zhenyu Zhang, Jun Li, Jian Yang,
- Abstract summary: Tri-Perspective view Decomposition (TPVD) is a novel framework that can explicitly model 3D geometry.
TPVD decomposes the original point cloud into three 2D views.
TPVD outperforms existing methods on KITTI, NYUv2, and SUN RGBD.
- Score: 24.98850285904668
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Depth completion is a vital task for autonomous driving, as it involves reconstructing the precise 3D geometry of a scene from sparse and noisy depth measurements. However, most existing methods either rely only on 2D depth representations or directly incorporate raw 3D point clouds for compensation, which are still insufficient to capture the fine-grained 3D geometry of the scene. To address this challenge, we introduce Tri-Perspective view Decomposition (TPVD), a novel framework that can explicitly model 3D geometry. In particular, (1) TPVD ingeniously decomposes the original point cloud into three 2D views, one of which corresponds to the sparse depth input. (2) We design TPV Fusion to update the 2D TPV features through recurrent 2D-3D-2D aggregation, where a Distance-Aware Spherical Convolution (DASC) is applied. (3) By adaptively choosing TPV affinitive neighbors, the newly proposed Geometric Spatial Propagation Network (GSPN) further improves the geometric consistency. As a result, our TPVD outperforms existing methods on KITTI, NYUv2, and SUN RGBD. Furthermore, we build a novel depth completion dataset named TOFDC, which is acquired by the time-of-flight (TOF) sensor and the color camera on smartphones. Project page: https://yanzq95.github.io/projectpage/TOFDC/index.html
Related papers
- DeCoTR: Enhancing Depth Completion with 2D and 3D Attentions [41.55908366474901]
We introduce a novel approach that harnesses both 2D and 3D attentions to enable highly accurate depth completion.
We evaluate our method, DeCoTR, on established depth completion benchmarks.
arXiv Detail & Related papers (2024-03-18T19:22:55Z) - Dynamic 3D Point Cloud Sequences as 2D Videos [81.46246338686478]
3D point cloud sequences serve as one of the most common and practical representation modalities of real-world environments.
We propose a novel generic representation called textitStructured Point Cloud Videos (SPCVs)
SPCVs re-organizes a point cloud sequence as a 2D video with spatial smoothness and temporal consistency, where the pixel values correspond to the 3D coordinates of points.
arXiv Detail & Related papers (2024-03-02T08:18:57Z) - MVDD: Multi-View Depth Diffusion Models [34.60436841755035]
We propose leveraging multi-view depth, which represents complex 3D shapes in a 2D data format that is easy to denoise.
We pair this representation with a diffusion model, MVDD, that is capable of generating high-quality dense point clouds.
State-of-the-art results from extensive experiments demonstrate MVDD's excellent ability in 3D shape generation, depth completion, and its potential as a 3D prior for downstream tasks.
arXiv Detail & Related papers (2023-12-08T07:16:09Z) - NDC-Scene: Boost Monocular 3D Semantic Scene Completion in Normalized
Device Coordinates Space [77.6067460464962]
Monocular 3D Semantic Scene Completion (SSC) has garnered significant attention in recent years due to its potential to predict complex semantics and geometry shapes from a single image, requiring no 3D inputs.
We identify several critical issues in current state-of-the-art methods, including the Feature Ambiguity of projected 2D features in the ray to the 3D space, the Pose Ambiguity of the 3D convolution, and the Imbalance in the 3D convolution across different depth levels.
We devise a novel Normalized Device Coordinates scene completion network (NDC-Scene) that directly extends the 2
arXiv Detail & Related papers (2023-09-26T02:09:52Z) - PointMCD: Boosting Deep Point Cloud Encoders via Multi-view Cross-modal
Distillation for 3D Shape Recognition [55.38462937452363]
We propose a unified multi-view cross-modal distillation architecture, including a pretrained deep image encoder as the teacher and a deep point encoder as the student.
By pair-wise aligning multi-view visual and geometric descriptors, we can obtain more powerful deep point encoders without exhausting and complicated network modification.
arXiv Detail & Related papers (2022-07-07T07:23:20Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based
Perception [122.53774221136193]
State-of-the-art methods for driving-scene LiDAR-based perception often project the point clouds to 2D space and then process them via 2D convolution.
A natural remedy is to utilize the 3D voxelization and 3D convolution network.
We propose a new framework for the outdoor LiDAR segmentation, where cylindrical partition and asymmetrical 3D convolution networks are designed to explore the 3D geometric pattern.
arXiv Detail & Related papers (2021-09-12T06:25:11Z) - Learning Geometry-Guided Depth via Projective Modeling for Monocular 3D Object Detection [70.71934539556916]
We learn geometry-guided depth estimation with projective modeling to advance monocular 3D object detection.
Specifically, a principled geometry formula with projective modeling of 2D and 3D depth predictions in the monocular 3D object detection network is devised.
Our method remarkably improves the detection performance of the state-of-the-art monocular-based method without extra data by 2.80% on the moderate test setting.
arXiv Detail & Related papers (2021-07-29T12:30:39Z) - Cylinder3D: An Effective 3D Framework for Driving-scene LiDAR Semantic
Segmentation [87.54570024320354]
State-of-the-art methods for large-scale driving-scene LiDAR semantic segmentation often project and process the point clouds in the 2D space.
A straightforward solution to tackle the issue of 3D-to-2D projection is to keep the 3D representation and process the points in the 3D space.
We develop a 3D cylinder partition and a 3D cylinder convolution based framework, termed as Cylinder3D, which exploits the 3D topology relations and structures of driving-scene point clouds.
arXiv Detail & Related papers (2020-08-04T13:56:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.