Clean-image Backdoor Attacks
- URL: http://arxiv.org/abs/2403.15010v2
- Date: Tue, 26 Mar 2024 12:16:14 GMT
- Title: Clean-image Backdoor Attacks
- Authors: Dazhong Rong, Guoyao Yu, Shuheng Shen, Xinyi Fu, Peng Qian, Jianhai Chen, Qinming He, Xing Fu, Weiqiang Wang,
- Abstract summary: We propose clean-image backdoor attacks which uncover that backdoors can still be injected via a fraction of incorrect labels.
In our attacks, the attacker first seeks a trigger feature to divide the training images into two parts.
The backdoor will be finally implanted into the target model after it is trained on the poisoned data.
- Score: 34.051173092777844
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To gather a significant quantity of annotated training data for high-performance image classification models, numerous companies opt to enlist third-party providers to label their unlabeled data. This practice is widely regarded as secure, even in cases where some annotated errors occur, as the impact of these minor inaccuracies on the final performance of the models is negligible and existing backdoor attacks require attacker's ability to poison the training images. Nevertheless, in this paper, we propose clean-image backdoor attacks which uncover that backdoors can still be injected via a fraction of incorrect labels without modifying the training images. Specifically, in our attacks, the attacker first seeks a trigger feature to divide the training images into two parts: those with the feature and those without it. Subsequently, the attacker falsifies the labels of the former part to a backdoor class. The backdoor will be finally implanted into the target model after it is trained on the poisoned data. During the inference phase, the attacker can activate the backdoor in two ways: slightly modifying the input image to obtain the trigger feature, or taking an image that naturally has the trigger feature as input. We conduct extensive experiments to demonstrate the effectiveness and practicality of our attacks. According to the experimental results, we conclude that our attacks seriously jeopardize the fairness and robustness of image classification models, and it is necessary to be vigilant about the incorrect labels in outsourced labeling.
Related papers
- Impart: An Imperceptible and Effective Label-Specific Backdoor Attack [15.859650783567103]
We propose a novel imperceptible backdoor attack framework, named Impart, in the scenario where the attacker has no access to the victim model.
Specifically, in order to enhance the attack capability of the all-to-all setting, we first propose a label-specific attack.
arXiv Detail & Related papers (2024-03-18T07:22:56Z) - Object-oriented backdoor attack against image captioning [40.5688859498834]
Backdoor attack against image classification task has been widely studied and proven to be successful.
In this paper, we explore backdoor attack towards image captioning models by poisoning training data.
Our method proves the weakness of image captioning models to backdoor attack and we hope this work can raise the awareness of defending against backdoor attack in the image captioning field.
arXiv Detail & Related papers (2024-01-05T01:52:13Z) - Just Rotate it: Deploying Backdoor Attacks via Rotation Transformation [48.238349062995916]
We find that highly effective backdoors can be easily inserted using rotation-based image transformation.
Our work highlights a new, simple, physically realizable, and highly effective vector for backdoor attacks.
arXiv Detail & Related papers (2022-07-22T00:21:18Z) - Narcissus: A Practical Clean-Label Backdoor Attack with Limited
Information [22.98039177091884]
"Clean-label" backdoor attacks require knowledge of the entire training set to be effective.
This paper provides an algorithm to mount clean-label backdoor attacks based only on the knowledge of representative examples from the target class.
Our attack works well across datasets and models, even when the trigger presents in the physical world.
arXiv Detail & Related papers (2022-04-11T16:58:04Z) - Textual Backdoor Attacks Can Be More Harmful via Two Simple Tricks [58.0225587881455]
In this paper, we find two simple tricks that can make existing textual backdoor attacks much more harmful.
The first trick is to add an extra training task to distinguish poisoned and clean data during the training of the victim model.
The second one is to use all the clean training data rather than remove the original clean data corresponding to the poisoned data.
arXiv Detail & Related papers (2021-10-15T17:58:46Z) - Backdoor Attack on Hash-based Image Retrieval via Clean-label Data
Poisoning [54.15013757920703]
We propose the confusing perturbations-induced backdoor attack (CIBA)
It injects a small number of poisoned images with the correct label into the training data.
We have conducted extensive experiments to verify the effectiveness of our proposed CIBA.
arXiv Detail & Related papers (2021-09-18T07:56:59Z) - Sleeper Agent: Scalable Hidden Trigger Backdoors for Neural Networks
Trained from Scratch [99.90716010490625]
Backdoor attackers tamper with training data to embed a vulnerability in models that are trained on that data.
This vulnerability is then activated at inference time by placing a "trigger" into the model's input.
We develop a new hidden trigger attack, Sleeper Agent, which employs gradient matching, data selection, and target model re-training during the crafting process.
arXiv Detail & Related papers (2021-06-16T17:09:55Z) - Backdoor Attacks on Self-Supervised Learning [22.24046752858929]
We show that self-supervised learning methods are vulnerable to backdoor attacks.
An attacker poisons a part of the unlabeled data by adding a small trigger (known to the attacker) to the images.
We propose a knowledge distillation based defense algorithm that succeeds in neutralizing the attack.
arXiv Detail & Related papers (2021-05-21T04:22:05Z) - Backdoor Attack in the Physical World [49.64799477792172]
Backdoor attack intends to inject hidden backdoor into the deep neural networks (DNNs)
Most existing backdoor attacks adopted the setting of static trigger, $i.e.,$ triggers across the training and testing images.
We demonstrate that this attack paradigm is vulnerable when the trigger in testing images is not consistent with the one used for training.
arXiv Detail & Related papers (2021-04-06T08:37:33Z) - Clean-Label Backdoor Attacks on Video Recognition Models [87.46539956587908]
We show that image backdoor attacks are far less effective on videos.
We propose the use of a universal adversarial trigger as the backdoor trigger to attack video recognition models.
Our proposed backdoor attack is resistant to state-of-the-art backdoor defense/detection methods.
arXiv Detail & Related papers (2020-03-06T04:51:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.