DP-Dueling: Learning from Preference Feedback without Compromising User Privacy
- URL: http://arxiv.org/abs/2403.15045v1
- Date: Fri, 22 Mar 2024 09:02:12 GMT
- Title: DP-Dueling: Learning from Preference Feedback without Compromising User Privacy
- Authors: Aadirupa Saha, Hilal Asi,
- Abstract summary: We give the first differentially private dueling bandit algorithm for active learning with user preferences.
Our algorithms are computationally efficient with near-optimal performance.
We extend our results to any general decision space in $d$-dimensions with potentially infinite arms.
- Score: 32.58099924135157
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the well-studied dueling bandit problem, where a learner aims to identify near-optimal actions using pairwise comparisons, under the constraint of differential privacy. We consider a general class of utility-based preference matrices for large (potentially unbounded) decision spaces and give the first differentially private dueling bandit algorithm for active learning with user preferences. Our proposed algorithms are computationally efficient with near-optimal performance, both in terms of the private and non-private regret bound. More precisely, we show that when the decision space is of finite size $K$, our proposed algorithm yields order optimal $O\Big(\sum_{i = 2}^K\log\frac{KT}{\Delta_i} + \frac{K}{\epsilon}\Big)$ regret bound for pure $\epsilon$-DP, where $\Delta_i$ denotes the suboptimality gap of the $i$-th arm. We also present a matching lower bound analysis which proves the optimality of our algorithms. Finally, we extend our results to any general decision space in $d$-dimensions with potentially infinite arms and design an $\epsilon$-DP algorithm with regret $\tilde{O} \left( \frac{d^6}{\kappa \epsilon } + \frac{ d\sqrt{T }}{\kappa} \right)$, providing privacy for free when $T \gg d$.
Related papers
- Perturb-and-Project: Differentially Private Similarities and Marginals [73.98880839337873]
We revisit the input perturbations framework for differential privacy where noise is added to the input $Ain mathcalS$.
We first design novel efficient algorithms to privately release pair-wise cosine similarities.
We derive a novel algorithm to compute $k$-way marginal queries over $n$ features.
arXiv Detail & Related papers (2024-06-07T12:07:16Z) - Towards Optimal Regret in Adversarial Linear MDPs with Bandit Feedback [30.337826346496385]
We study online reinforcement learning in linear Markov decision processes with adversarial losses and bandit feedback.
We introduce two algorithms that achieve improved regret performance compared to existing approaches.
arXiv Detail & Related papers (2023-10-17T19:43:37Z) - Near-Optimal Algorithms for Private Online Optimization in the
Realizable Regime [74.52487417350221]
We consider online learning problems in the realizable setting, where there is a zero-loss solution.
We propose new Differentially Private (DP) algorithms that obtain near-optimal regret bounds.
arXiv Detail & Related papers (2023-02-27T21:19:24Z) - Private Online Prediction from Experts: Separations and Faster Rates [74.52487417350221]
Online prediction from experts is a fundamental problem in machine learning and several works have studied this problem under privacy constraints.
We propose and analyze new algorithms for this problem that improve over the regret bounds of the best existing algorithms for non-adaptive adversaries.
arXiv Detail & Related papers (2022-10-24T18:40:19Z) - Scalable Differentially Private Clustering via Hierarchically Separated
Trees [82.69664595378869]
We show that our method computes a solution with cost at most $O(d3/2log n)cdot OPT + O(k d2 log2 n / epsilon2)$, where $epsilon$ is the privacy guarantee.
Although the worst-case guarantee is worse than that of state of the art private clustering methods, the algorithm we propose is practical.
arXiv Detail & Related papers (2022-06-17T09:24:41Z) - Learning with User-Level Privacy [61.62978104304273]
We analyze algorithms to solve a range of learning tasks under user-level differential privacy constraints.
Rather than guaranteeing only the privacy of individual samples, user-level DP protects a user's entire contribution.
We derive an algorithm that privately answers a sequence of $K$ adaptively chosen queries with privacy cost proportional to $tau$, and apply it to solve the learning tasks we consider.
arXiv Detail & Related papers (2021-02-23T18:25:13Z) - Near-Optimal Algorithms for Differentially Private Online Learning in a Stochastic Environment [7.4288915613206505]
We study differentially private online learning problems in a environment under both bandit and full information feedback.
For differentially private bandits, we propose both UCB and Thompson Sampling-based algorithms that are anytime and achieve the optimal $O left(sum_j: Delta_j>0 fracln(T)min leftDelta_j, epsilon right right)$ minimax lower bound.
For the same differentially private full information setting, we also present an $epsilon$-differentially
arXiv Detail & Related papers (2021-02-16T02:48:16Z) - Near-Optimal Regret Bounds for Contextual Combinatorial Semi-Bandits
with Linear Payoff Functions [53.77572276969548]
We show that the C$2$UCB algorithm has the optimal regret bound $tildeO(dsqrtkT + dk)$ for the partition matroid constraints.
For general constraints, we propose an algorithm that modifies the reward estimates of arms in the C$2$UCB algorithm.
arXiv Detail & Related papers (2021-01-20T04:29:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.