Testing for Fault Diversity in Reinforcement Learning
- URL: http://arxiv.org/abs/2403.15065v1
- Date: Fri, 22 Mar 2024 09:46:30 GMT
- Title: Testing for Fault Diversity in Reinforcement Learning
- Authors: Quentin Mazouni, Helge Spieker, Arnaud Gotlieb, Mathieu Acher,
- Abstract summary: We argue that policy testing should not find as many failures as possible (e.g., inputs that trigger similar car crashes) but rather aim at revealing as informative and diverse faults as possible in the model.
We show that QD optimisation, while being conceptually simple and generally applicable, finds effectively more diverse faults in the decision model.
- Score: 13.133263651395865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement Learning is the premier technique to approach sequential decision problems, including complex tasks such as driving cars and landing spacecraft. Among the software validation and verification practices, testing for functional fault detection is a convenient way to build trustworthiness in the learned decision model. While recent works seek to maximise the number of detected faults, none consider fault characterisation during the search for more diversity. We argue that policy testing should not find as many failures as possible (e.g., inputs that trigger similar car crashes) but rather aim at revealing as informative and diverse faults as possible in the model. In this paper, we explore the use of quality diversity optimisation to solve the problem of fault diversity in policy testing. Quality diversity (QD) optimisation is a type of evolutionary algorithm to solve hard combinatorial optimisation problems where high-quality diverse solutions are sought. We define and address the underlying challenges of adapting QD optimisation to the test of action policies. Furthermore, we compare classical QD optimisers to state-of-the-art frameworks dedicated to policy testing, both in terms of search efficiency and fault diversity. We show that QD optimisation, while being conceptually simple and generally applicable, finds effectively more diverse faults in the decision model, and conclude that QD-based policy testing is a promising approach.
Related papers
- Illuminating the Diversity-Fitness Trade-Off in Black-Box Optimization [9.838618121102053]
In real-world applications, users often favor structurally diverse design choices over one high-quality solution.
This paper presents a fresh perspective on this challenge by considering the problem of identifying a fixed number of solutions with a pairwise distance above a specified threshold.
arXiv Detail & Related papers (2024-08-29T09:55:55Z) - An Efficient Approach for Solving Expensive Constrained Multiobjective Optimization Problems [0.0]
An efficient probabilistic selection based constrained multi-objective EA is proposed, referred to as PSCMOEA.
It comprises novel elements such as (a) an adaptive search bound identification scheme based on the feasibility and convergence status of evaluated solutions.
Numerical experiments are conducted on an extensive range of challenging constrained problems using low evaluation budgets to simulate ECMOPs.
arXiv Detail & Related papers (2024-05-22T02:32:58Z) - On Pitfalls of Test-Time Adaptation [82.8392232222119]
Test-Time Adaptation (TTA) has emerged as a promising approach for tackling the robustness challenge under distribution shifts.
We present TTAB, a test-time adaptation benchmark that encompasses ten state-of-the-art algorithms, a diverse array of distribution shifts, and two evaluation protocols.
arXiv Detail & Related papers (2023-06-06T09:35:29Z) - Efficient Quality-Diversity Optimization through Diverse Quality Species [3.428706362109921]
We show that a diverse population of solutions can be found without the limitation of needing an archive or defining the range of behaviors in advance.
We propose Diverse Quality Species (DQS) as an alternative to archive-based Quality-Diversity (QD) algorithms.
arXiv Detail & Related papers (2023-04-14T23:15:51Z) - Uncertainty-Driven Action Quality Assessment [67.20617610820857]
We propose a novel probabilistic model, named Uncertainty-Driven AQA (UD-AQA), to capture the diversity among multiple judge scores.
We generate the estimation of uncertainty for each prediction, which is employed to re-weight AQA regression loss.
Our proposed method achieves competitive results on three benchmarks including the Olympic events MTL-AQA and FineDiving, and the surgical skill JIGSAWS datasets.
arXiv Detail & Related papers (2022-07-29T07:21:15Z) - Uncertainty-Aware Search Framework for Multi-Objective Bayesian
Optimization [40.40632890861706]
We consider the problem of multi-objective (MO) blackbox optimization using expensive function evaluations.
We propose a novel uncertainty-aware search framework referred to as USeMO to efficiently select the sequence of inputs for evaluation.
arXiv Detail & Related papers (2022-04-12T16:50:48Z) - Evolutionary Diversity Optimisation for The Traveling Thief Problem [11.590506672325668]
We introduce a bi-level evolutionary algorithm to maximise the structural diversity of the set of solutions.
We empirically determine the best method to obtain diversity.
Our experimental results show a significant improvement of the QD approach in terms of structural diversity for most TTP benchmark instances.
arXiv Detail & Related papers (2022-04-06T10:13:55Z) - Robust Policy Learning over Multiple Uncertainty Sets [91.67120465453179]
Reinforcement learning (RL) agents need to be robust to variations in safety-critical environments.
We develop an algorithm that enjoys the benefits of both system identification and robust RL.
arXiv Detail & Related papers (2022-02-14T20:06:28Z) - Learning MDPs from Features: Predict-Then-Optimize for Sequential
Decision Problems by Reinforcement Learning [52.74071439183113]
We study the predict-then-optimize framework in the context of sequential decision problems (formulated as MDPs) solved via reinforcement learning.
Two significant computational challenges arise in applying decision-focused learning to MDPs.
arXiv Detail & Related papers (2021-06-06T23:53:31Z) - Discovering Diverse Solutions in Deep Reinforcement Learning [84.45686627019408]
Reinforcement learning algorithms are typically limited to learning a single solution of a specified task.
We propose an RL method that can learn infinitely many solutions by training a policy conditioned on a continuous or discrete low-dimensional latent variable.
arXiv Detail & Related papers (2021-03-12T04:54:31Z) - Quality meets Diversity: A Model-Agnostic Framework for Computerized
Adaptive Testing [60.38182654847399]
Computerized Adaptive Testing (CAT) is emerging as a promising testing application in many scenarios.
We propose a novel framework, namely Model-Agnostic Adaptive Testing (MAAT) for CAT solution.
arXiv Detail & Related papers (2021-01-15T06:48:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.