Evolutionary Diversity Optimisation for The Traveling Thief Problem
- URL: http://arxiv.org/abs/2204.02709v1
- Date: Wed, 6 Apr 2022 10:13:55 GMT
- Title: Evolutionary Diversity Optimisation for The Traveling Thief Problem
- Authors: Adel Nikfarjam, Aneta Neumann, and Frank Neumann
- Abstract summary: We introduce a bi-level evolutionary algorithm to maximise the structural diversity of the set of solutions.
We empirically determine the best method to obtain diversity.
Our experimental results show a significant improvement of the QD approach in terms of structural diversity for most TTP benchmark instances.
- Score: 11.590506672325668
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There has been a growing interest in the evolutionary computation community
to compute a diverse set of high-quality solutions for a given optimisation
problem. This can provide the practitioners with invaluable information about
the solution space and robustness against imperfect modelling and minor
problems' changes. It also enables the decision-makers to involve their
interests and choose between various solutions. In this study, we investigate
for the first time a prominent multi-component optimisation problem, namely the
Traveling Thief Problem (TTP), in the context of evolutionary diversity
optimisation. We introduce a bi-level evolutionary algorithm to maximise the
structural diversity of the set of solutions. Moreover, we examine the
inter-dependency among the components of the problem in terms of structural
diversity and empirically determine the best method to obtain diversity. We
also conduct a comprehensive experimental investigation to examine the
introduced algorithm and compare the results to another recently introduced
framework based on the use of Quality Diversity (QD). Our experimental results
show a significant improvement of the QD approach in terms of structural
diversity for most TTP benchmark instances.
Related papers
- Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Then framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by joint predictive models.
arXiv Detail & Related papers (2024-09-07T19:52:14Z) - Illuminating the Diversity-Fitness Trade-Off in Black-Box Optimization [9.838618121102053]
In real-world applications, users often favor structurally diverse design choices over one high-quality solution.
This paper presents a fresh perspective on this challenge by considering the problem of identifying a fixed number of solutions with a pairwise distance above a specified threshold.
arXiv Detail & Related papers (2024-08-29T09:55:55Z) - Evolutionary Multi-Objective Diversity Optimization [14.930208990741129]
We treat this problem as a bi-objective optimization problem, which is to obtain a range of quality-diversity trade-offs.
We present a suitable general implementation scheme that is compatible with existing evolutionary multi-objective search methods.
The resulting non-dominated populations exhibit rich qualitative features, giving insights into the optimization instances and the quality-diversity trade-offs they induce.
arXiv Detail & Related papers (2024-01-15T03:59:42Z) - Towards Multi-Objective High-Dimensional Feature Selection via
Evolutionary Multitasking [63.91518180604101]
This paper develops a novel EMT framework for high-dimensional feature selection problems, namely MO-FSEMT.
A task-specific knowledge transfer mechanism is designed to leverage the advantage information of each task, enabling the discovery and effective transmission of high-quality solutions.
arXiv Detail & Related papers (2024-01-03T06:34:39Z) - Socio-cognitive Optimization of Time-delay Control Problems using
Evolutionary Metaheuristics [89.24951036534168]
Metaheuristics are universal optimization algorithms which should be used for solving difficult problems, unsolvable by classic approaches.
In this paper we aim at constructing novel socio-cognitive metaheuristic based on castes, and apply several versions of this algorithm to optimization of time-delay system model.
arXiv Detail & Related papers (2022-10-23T22:21:10Z) - Computing High-Quality Solutions for the Patient Admission Scheduling
Problem using Evolutionary Diversity Optimisation [10.609857097723266]
We adapt the evolutionary diversity optimisation for a real-world problem, namely patient admission scheduling.
We introduce an evolutionary algorithm to achieve structural diversity in a set of solutions subjected to the quality of each solution.
arXiv Detail & Related papers (2022-07-28T14:26:45Z) - Co-Evolutionary Diversity Optimisation for the Traveling Thief Problem [11.590506672325668]
We introduce a co-evolutionary algorithm to simultaneously explore the two spaces for the multi-component traveling thief problem.
Results show the capability of the co-evolutionary algorithm to achieve significantly higher diversity compared to the baseline evolutionary diversity algorithms from the the literature.
arXiv Detail & Related papers (2022-07-28T12:02:15Z) - Result Diversification by Multi-objective Evolutionary Algorithms with
Theoretical Guarantees [94.72461292387146]
We propose to reformulate the result diversification problem as a bi-objective search problem, and solve it by a multi-objective evolutionary algorithm (EA)
We theoretically prove that the GSEMO can achieve the optimal-time approximation ratio, $1/2$.
When the objective function changes dynamically, the GSEMO can maintain this approximation ratio in running time, addressing the open question proposed by Borodin et al.
arXiv Detail & Related papers (2021-10-18T14:00:22Z) - Harnessing Heterogeneity: Learning from Decomposed Feedback in Bayesian
Modeling [68.69431580852535]
We introduce a novel GP regression to incorporate the subgroup feedback.
Our modified regression has provably lower variance -- and thus a more accurate posterior -- compared to previous approaches.
We execute our algorithm on two disparate social problems.
arXiv Detail & Related papers (2021-07-07T03:57:22Z) - An Analysis of Phenotypic Diversity in Multi-Solution Optimization [118.97353274202749]
We show that multiobjective optimization does not always produce much diversity, multimodal optimization produces higher fitness solutions, and quality diversity is not sensitive to genetic neutrality.
An autoencoder is used to discover phenotypic features automatically, producing an even more diverse solution set with quality diversity.
arXiv Detail & Related papers (2021-05-10T10:39:03Z) - Entropy-Based Evolutionary Diversity Optimisation for the Traveling
Salesperson Problem [11.590506672325668]
We employ a population diversity measure, called the high-order entropy measure, in an evolutionary algorithm to compute a diverse set of high-quality solutions for the Traveling Salesperson Problem.
We show significant improvements compared to a recently proposed edge-based diversity optimisation approach when working with a large population of solutions or long segments.
arXiv Detail & Related papers (2021-04-28T02:36:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.