CACA Agent: Capability Collaboration based AI Agent
- URL: http://arxiv.org/abs/2403.15137v1
- Date: Fri, 22 Mar 2024 11:42:47 GMT
- Title: CACA Agent: Capability Collaboration based AI Agent
- Authors: Peng Xu, Haoran Wang, Chuang Wang, Xu Liu,
- Abstract summary: We propose CACA Agent (Capability Collaboration based AI Agent) using an open architecture inspired by service computing.
CACA Agent integrates a set of collaborative capabilities to implement AI Agents, not only reducing the dependence on a single LLM.
We present a demo to illustrate the operation and the application scenario extension of CACA Agent.
- Score: 18.84686313298908
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As AI Agents based on Large Language Models (LLMs) have shown potential in practical applications across various fields, how to quickly deploy an AI agent and how to conveniently expand the application scenario of AI agents has become a challenge. Previous studies mainly focused on implementing all the reasoning capabilities of AI agents within a single LLM, which often makes the model more complex and also reduces the extensibility of AI agent functionality. In this paper, we propose CACA Agent (Capability Collaboration based AI Agent), using an open architecture inspired by service computing. CACA Agent integrates a set of collaborative capabilities to implement AI Agents, not only reducing the dependence on a single LLM, but also enhancing the extensibility of both the planning abilities and the tools available to AI agents. Utilizing the proposed system, we present a demo to illustrate the operation and the application scenario extension of CACA Agent.
Related papers
- A Taxonomy of AgentOps for Enabling Observability of Foundation Model based Agents [12.49728300301026]
LLMs have fueled the growth of a diverse range of downstream tasks, leading to an increased demand for AI automation.
As AI agent systems tackle more complex tasks and evolve, they involve a wider range of stakeholders.
These systems integrate multiple components such as AI agent, RAG pipelines, prompt management, agent capabilities, and observability features.
It is essential to shift towards designing AgentOps platforms that ensure observability and traceability across the entire development-to-production life-cycle.
arXiv Detail & Related papers (2024-11-08T02:31:03Z) - Gödel Agent: A Self-Referential Agent Framework for Recursive Self-Improvement [117.94654815220404]
G"odel Agent is a self-evolving framework inspired by the G"odel machine.
G"odel Agent can achieve continuous self-improvement, surpassing manually crafted agents in performance, efficiency, and generalizability.
arXiv Detail & Related papers (2024-10-06T10:49:40Z) - GenAgent: Build Collaborative AI Systems with Automated Workflow Generation -- Case Studies on ComfyUI [64.57616646552869]
This paper explores collaborative AI systems that use to enhance performance to integrate models, data sources, and pipelines to solve complex and diverse tasks.
We introduce GenAgent, an LLM-based framework that automatically generates complex, offering greater flexibility and scalability compared to monolithic models.
The results demonstrate that GenAgent outperforms baseline approaches in both run-level and task-level evaluations.
arXiv Detail & Related papers (2024-09-02T17:44:10Z) - Coalitions of Large Language Models Increase the Robustness of AI Agents [3.216132991084434]
Large Language Models (LLMs) have fundamentally altered the way we interact with digital systems.
LLMs are powerful and capable of demonstrating some emergent properties, but struggle to perform well at all sub-tasks carried out by an AI agent.
We assess if a system comprising of a coalition of pretrained LLMs, each exhibiting specialised performance at individual sub-tasks, can match the performance of single model agents.
arXiv Detail & Related papers (2024-08-02T16:37:44Z) - Building AI Agents for Autonomous Clouds: Challenges and Design Principles [17.03870042416836]
AI for IT Operations (AIOps) aims to automate complex operational tasks, like fault localization and root cause analysis, thereby reducing human intervention and customer impact.
This vision paper lays the groundwork for such a framework by first framing the requirements and then discussing design decisions.
We propose AIOpsLab, a prototype implementation leveraging agent-cloud-interface that orchestrates an application, injects real-time faults using chaos engineering, and interfaces with an agent to localize and resolve the faults.
arXiv Detail & Related papers (2024-07-16T20:40:43Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
Existing multi-agent frameworks often struggle with integrating diverse capable third-party agents.
We propose the Internet of Agents (IoA), a novel framework that addresses these limitations.
IoA introduces an agent integration protocol, an instant-messaging-like architecture design, and dynamic mechanisms for agent teaming and conversation flow control.
arXiv Detail & Related papers (2024-07-09T17:33:24Z) - AgentLite: A Lightweight Library for Building and Advancing
Task-Oriented LLM Agent System [91.41155892086252]
We open-source a new AI agent library, AgentLite, which simplifies research investigation into LLM agents.
AgentLite is a task-oriented framework designed to enhance the ability of agents to break down tasks.
We introduce multiple practical applications developed with AgentLite to demonstrate its convenience and flexibility.
arXiv Detail & Related papers (2024-02-23T06:25:20Z) - AgentScope: A Flexible yet Robust Multi-Agent Platform [66.64116117163755]
AgentScope is a developer-centric multi-agent platform with message exchange as its core communication mechanism.
The abundant syntactic tools, built-in agents and service functions, user-friendly interfaces for application demonstration and utility monitor, zero-code programming workstation, and automatic prompt tuning mechanism significantly lower the barriers to both development and deployment.
arXiv Detail & Related papers (2024-02-21T04:11:28Z) - The Rise and Potential of Large Language Model Based Agents: A Survey [91.71061158000953]
Large language models (LLMs) are regarded as potential sparks for Artificial General Intelligence (AGI)
We start by tracing the concept of agents from its philosophical origins to its development in AI, and explain why LLMs are suitable foundations for agents.
We explore the extensive applications of LLM-based agents in three aspects: single-agent scenarios, multi-agent scenarios, and human-agent cooperation.
arXiv Detail & Related papers (2023-09-14T17:12:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.