AIOpsLab: A Holistic Framework to Evaluate AI Agents for Enabling Autonomous Clouds
- URL: http://arxiv.org/abs/2501.06706v1
- Date: Sun, 12 Jan 2025 04:17:39 GMT
- Title: AIOpsLab: A Holistic Framework to Evaluate AI Agents for Enabling Autonomous Clouds
- Authors: Yinfang Chen, Manish Shetty, Gagan Somashekar, Minghua Ma, Yogesh Simmhan, Jonathan Mace, Chetan Bansal, Rujia Wang, Saravan Rajmohan,
- Abstract summary: AI for IT Operations (AIOps) aims to automate complex operational tasks, such as fault localization and root cause analysis, to reduce human workload and minimize customer impact.
Recent advances in Large Language Models (LLMs) and AI agents are revolutionizing AIOps by enabling end-to-end and multitask automation.
We present AIOPSLAB, a framework that deploys microservice cloud environments, injects faults, generates workloads, and exports telemetry data but also orchestrates these components and provides interfaces for interacting with and evaluating agents.
- Score: 12.464941027105306
- License:
- Abstract: AI for IT Operations (AIOps) aims to automate complex operational tasks, such as fault localization and root cause analysis, to reduce human workload and minimize customer impact. While traditional DevOps tools and AIOps algorithms often focus on addressing isolated operational tasks, recent advances in Large Language Models (LLMs) and AI agents are revolutionizing AIOps by enabling end-to-end and multitask automation. This paper envisions a future where AI agents autonomously manage operational tasks throughout the entire incident lifecycle, leading to self-healing cloud systems, a paradigm we term AgentOps. Realizing this vision requires a comprehensive framework to guide the design, development, and evaluation of these agents. To this end, we present AIOPSLAB, a framework that not only deploys microservice cloud environments, injects faults, generates workloads, and exports telemetry data but also orchestrates these components and provides interfaces for interacting with and evaluating agents. We discuss the key requirements for such a holistic framework and demonstrate how AIOPSLAB can facilitate the evaluation of next-generation AIOps agents. Through evaluations of state-of-the-art LLM agents within the benchmark created by AIOPSLAB, we provide insights into their capabilities and limitations in handling complex operational tasks in cloud environments.
Related papers
- TheAgentCompany: Benchmarking LLM Agents on Consequential Real World Tasks [52.46737975742287]
We build a self-contained environment with data that mimics a small software company environment.
We find that with the most competitive agent, 24% of the tasks can be completed autonomously.
This paints a nuanced picture on task automation with LM agents.
arXiv Detail & Related papers (2024-12-18T18:55:40Z) - AgentOps: Enabling Observability of LLM Agents [12.49728300301026]
Large language model (LLM) agents raise significant concerns on AI safety due to their autonomous and non-deterministic behavior.
We present a comprehensive taxonomy of AgentOps, identifying the artifacts and associated data that should be traced throughout the entire lifecycle of agents to achieve effective observability.
Our taxonomy serves as a reference template for developers to design and implement AgentOps infrastructure that supports monitoring, logging, and analytics.
arXiv Detail & Related papers (2024-11-08T02:31:03Z) - Asynchronous Tool Usage for Real-Time Agents [61.3041983544042]
We introduce asynchronous AI agents capable of parallel processing and real-time tool-use.
Our key contribution is an event-driven finite-state machine architecture for agent execution and prompting.
This work presents both a conceptual framework and practical tools for creating AI agents capable of fluid, multitasking interactions.
arXiv Detail & Related papers (2024-10-28T23:57:19Z) - Proactive Agent: Shifting LLM Agents from Reactive Responses to Active Assistance [95.03771007780976]
We tackle the challenge of developing proactive agents capable of anticipating and initiating tasks without explicit human instructions.
First, we collect real-world human activities to generate proactive task predictions.
These predictions are labeled by human annotators as either accepted or rejected.
The labeled data is used to train a reward model that simulates human judgment.
arXiv Detail & Related papers (2024-10-16T08:24:09Z) - Building AI Agents for Autonomous Clouds: Challenges and Design Principles [17.03870042416836]
AI for IT Operations (AIOps) aims to automate complex operational tasks, like fault localization and root cause analysis, thereby reducing human intervention and customer impact.
This vision paper lays the groundwork for such a framework by first framing the requirements and then discussing design decisions.
We propose AIOpsLab, a prototype implementation leveraging agent-cloud-interface that orchestrates an application, injects real-time faults using chaos engineering, and interfaces with an agent to localize and resolve the faults.
arXiv Detail & Related papers (2024-07-16T20:40:43Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
Existing multi-agent frameworks often struggle with integrating diverse capable third-party agents.
We propose the Internet of Agents (IoA), a novel framework that addresses these limitations.
IoA introduces an agent integration protocol, an instant-messaging-like architecture design, and dynamic mechanisms for agent teaming and conversation flow control.
arXiv Detail & Related papers (2024-07-09T17:33:24Z) - SWE-agent: Agent-Computer Interfaces Enable Automated Software Engineering [79.07755560048388]
SWE-agent is a system that facilitates LM agents to autonomously use computers to solve software engineering tasks.
SWE-agent's custom agent-computer interface (ACI) significantly enhances an agent's ability to create and edit code files, navigate entire repositories, and execute tests and other programs.
We evaluate SWE-agent on SWE-bench and HumanEvalFix, achieving state-of-the-art performance on both with a pass@1 rate of 12.5% and 87.7%, respectively.
arXiv Detail & Related papers (2024-05-06T17:41:33Z) - CACA Agent: Capability Collaboration based AI Agent [18.84686313298908]
We propose CACA Agent (Capability Collaboration based AI Agent) using an open architecture inspired by service computing.
CACA Agent integrates a set of collaborative capabilities to implement AI Agents, not only reducing the dependence on a single LLM.
We present a demo to illustrate the operation and the application scenario extension of CACA Agent.
arXiv Detail & Related papers (2024-03-22T11:42:47Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
Artificial Intelligence for IT operations (AIOps) aims to combine the power of AI with the big data generated by IT Operations processes.
We discuss in depth the key types of data emitted by IT Operations activities, the scale and challenges in analyzing them, and where they can be helpful.
We categorize the key AIOps tasks as - incident detection, failure prediction, root cause analysis and automated actions.
arXiv Detail & Related papers (2023-04-10T15:38:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.