Spread complexity and dynamical transition in multimode Bose-Einstein condensates
- URL: http://arxiv.org/abs/2403.15154v2
- Date: Thu, 22 Aug 2024 11:15:44 GMT
- Title: Spread complexity and dynamical transition in multimode Bose-Einstein condensates
- Authors: Bozhen Zhou, Shu Chen,
- Abstract summary: We study the spread complexity in two-mode Bose-Einstein condensations.
We reveal that the spread complexity exhibits a sharp transition from lower to higher value.
We also examine the sensitivity of $overlineC_K$ for the triple-well bosonic model.
- Score: 4.889561507168047
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the spread complexity in two-mode Bose-Einstein condensations and unveil that the long-time average of the spread complexity $\overline{C}_{K}$ can probe the dynamical transition from self-trapping to Josephson oscillation. When the parameter $\omega$ increases over a critical value $\omega_{c}$, we reveal that the spread complexity exhibits a sharp transition from lower to higher value, with the corresponding phase space trajectory changing from self-trapping to Josephson oscillation. Moreover, we scrutinize the eigen-spectrum and uncover the relation between the dynamical transition and the excited state quantum phase transition, which is characterized by the emergence of singularity in the density of states at critical energy $E_{c}$. In the thermodynamical limit, the cross point of $E_{c}(\omega)$ and the initial energy $E_{0}(\omega)$ determines the dynamical transition point $\omega_{c}$. Furthermore, we show that the different dynamical behavior for the initial state at a fixed point can be distinguished by the long-time average of the spread complexity, when the fixed point changes from unstable to stable. Finally, we also examine the sensitivity of $\overline{C}_{K}$ for the triple-well bosonic model which exibits the transition from chaotic dynamics to regular dynamics.
Related papers
- KPZ scaling from the Krylov space [83.88591755871734]
Recently, a superdiffusion exhibiting the Kardar-Parisi-Zhang scaling in late-time correlators and autocorrelators has been reported.
Inspired by these results, we explore the KPZ scaling in correlation functions using their realization in the Krylov operator basis.
arXiv Detail & Related papers (2024-06-04T20:57:59Z) - Dissipative phase transition: from qubits to qudits [0.0]
We investigate the fate of dissipative phase transitions in quantum many-body systems when the individual constituents are qudits instead of qubits.
Considering qudits instead of qubits opens new perspectives on accessing rich phase diagrams in open many-body systems.
arXiv Detail & Related papers (2024-05-02T12:08:28Z) - Ancilla quantum measurements on interacting chains: Sensitivity of entanglement dynamics to the type and concentration of detectors [46.76612530830571]
We consider a quantum many-body lattice system that is coupled to ancillary degrees of freedom (detectors'')
We explore the dynamics of density and of entanglement entropy in the chain, for various values of $rho_a$ and $M$.
arXiv Detail & Related papers (2023-11-21T21:41:11Z) - Scale-invariant phase transition of disordered bosons in one dimension [0.0]
disorder-induced quantum phase transition between superfluid and non-superfluid states of bosonic particles in one dimension is generally expected to be of the Berezinskii-Kosterlitz-Thouless (BKT) type.
Here, we show that hard-core lattice bosons with integrable power-law hopping decaying with distance as $1/ralpha$ undergo a non-BKT continuous phase transition instead.
arXiv Detail & Related papers (2023-10-26T13:30:12Z) - Dynamical transition from localized to uniform scrambling in locally
hyperbolic systems [0.0]
We show that a wave, initially localized around a hyperbolic fixed point, features a distinct dynamical transition between these two regions.
Our results suggest that the existence of this crossover is a hallmark of separatrix dynamics in integrable systems.
arXiv Detail & Related papers (2023-03-26T22:31:44Z) - Entanglement and correlations in fast collective neutrino flavor
oscillations [68.8204255655161]
Collective neutrino oscillations play a crucial role in transporting lepton flavor in astrophysical settings.
We study the full out-of-equilibrium flavor dynamics in simple multi-angle geometries displaying fast oscillations.
We present evidence that these fast collective modes are generated by the same dynamical phase transition.
arXiv Detail & Related papers (2022-03-05T17:00:06Z) - Peratic Phase Transition by Bulk-to-Surface Response [26.49714398456829]
We show a duality between many-body dynamics and static Hamiltonian ground states for both classical and quantum systems.
Our prediction of peratic phase transition has direct consequences in quantum simulation platforms such as Rydberg atoms and superconducting qubits.
arXiv Detail & Related papers (2021-09-27T18:00:01Z) - Long-lived quantum coherent dynamics of a $\Lambda$-system driven by a
thermal environment [0.0]
We present a theoretical study of quantum coherent dynamics of a three-level $Lambda$ system driven by a thermal environment.
Our results suggest that thermal excitations can generate experimentally observable long-lived quantum coherent dynamics in the ground-state subspace of atomic and molecular $Lambda$ systems.
arXiv Detail & Related papers (2021-08-17T06:24:34Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Quantum Phase Transition of Many Interacting Spins Coupled to a Bosonic
Bath: static and dynamical properties [0.0]
We show that in the Ohmic regime, a Beretzinski-Thouless-Kosterlitz quantum phase transition occurs.
For the observed quantum phase transition we also establish a criterion analogous to that of the metal-insulator transition in solids.
arXiv Detail & Related papers (2021-03-30T10:07:11Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.