Brain-grounding of semantic vectors improves neural decoding of visual stimuli
- URL: http://arxiv.org/abs/2403.15176v1
- Date: Fri, 22 Mar 2024 13:01:10 GMT
- Title: Brain-grounding of semantic vectors improves neural decoding of visual stimuli
- Authors: Shirin Vafaei, Ryohei Fukuma, Huixiang Yang, Haruhiko Kishima, Takufumi Yanagisawa,
- Abstract summary: We propose a representation learning framework, termed brain-grounding of semantic vectors.
We trained this model with functional magnetic resonance imaging (fMRI) of 150 different visual stimuli categories.
We observed that by using the brain-grounded vectors, the brain decoding and identification accuracy on brain data from different modalities increases.
- Score: 0.3495246564946556
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Developing algorithms for accurate and comprehensive neural decoding of mental contents is one of the long-cherished goals in the field of neuroscience and brain-machine interfaces. Previous studies have demonstrated the feasibility of neural decoding by training machine learning models to map brain activity patterns into a semantic vector representation of stimuli. These vectors, hereafter referred as pretrained feature vectors, are usually derived from semantic spaces based solely on image and/or text features and therefore they might have a totally different characteristics than how visual stimuli is represented in the human brain, resulting in limiting the capability of brain decoders to learn this mapping. To address this issue, we propose a representation learning framework, termed brain-grounding of semantic vectors, which fine-tunes pretrained feature vectors to better align with the neural representation of visual stimuli in the human brain. We trained this model this model with functional magnetic resonance imaging (fMRI) of 150 different visual stimuli categories, and then performed zero-shot brain decoding and identification analyses on 1) fMRI and 2) magnetoencephalography (MEG). Interestingly, we observed that by using the brain-grounded vectors, the brain decoding and identification accuracy on brain data from different neuroimaging modalities increases. These findings underscore the potential of incorporating a richer array of brain-derived features to enhance performance of brain decoding algorithms.
Related papers
- Deep Neural Encoder-Decoder Model to Relate fMRI Brain Activity with Naturalistic Stimuli [2.7149743794003913]
We propose an end-to-end deep neural encoder-decoder model to encode and decode brain activity in response to naturalistic stimuli.<n>We employ temporal convolutional layers in our architecture, which effectively allows to bridge the temporal resolution gap between natural movie stimuli and fMRI.
arXiv Detail & Related papers (2025-07-16T08:08:48Z) - Voxel-Level Brain States Prediction Using Swin Transformer [65.9194533414066]
We propose a novel architecture which employs a 4D Shifted Window (Swin) Transformer as encoder to efficiently learn-temporal information and a convolutional decoder to enable brain state prediction at the same spatial and temporal resolution as the input fMRI data.<n>Our model has shown high accuracy when predicting 7.2s resting-state brain activities based on the prior 23.04s fMRI time series.<n>This shows promising evidence that thetemporal organization of the human brain can be learned by a Swin Transformer model, at high resolution, which provides a potential for reducing fMRI scan time and the development of brain-computer interfaces
arXiv Detail & Related papers (2025-06-13T04:14:38Z) - MindAligner: Explicit Brain Functional Alignment for Cross-Subject Visual Decoding from Limited fMRI Data [64.92867794764247]
MindAligner is a framework for cross-subject brain decoding from limited fMRI data.
Brain Transfer Matrix (BTM) projects the brain signals of an arbitrary new subject to one of the known subjects.
Brain Functional Alignment module is proposed to perform soft cross-subject brain alignment under different visual stimuli.
arXiv Detail & Related papers (2025-02-07T16:01:59Z) - Towards Neural Foundation Models for Vision: Aligning EEG, MEG, and fMRI Representations for Decoding, Encoding, and Modality Conversion [0.11249583407496218]
This paper presents a novel approach towards creating a foundational model for aligning neural data and visual stimuli across multimodal representationsof brain activity by leveraging contrastive learning.
We used electroencephalography (EEG), magnetoencephalography (MEG), and functional magnetic resonance imaging (fMRI) data.
Our framework's capabilities are demonstrated through three key experiments: decoding visual information from neural data, encoding images into neural representations, and converting between neural modalities.
arXiv Detail & Related papers (2024-11-14T12:27:27Z) - Graph Neural Networks for Brain Graph Learning: A Survey [53.74244221027981]
Graph neural networks (GNNs) have demonstrated a significant advantage in mining graph-structured data.
GNNs to learn brain graph representations for brain disorder analysis has recently gained increasing attention.
In this paper, we aim to bridge this gap by reviewing brain graph learning works that utilize GNNs.
arXiv Detail & Related papers (2024-06-01T02:47:39Z) - Brain3D: Generating 3D Objects from fMRI [76.41771117405973]
We design a novel 3D object representation learning method, Brain3D, that takes as input the fMRI data of a subject.
We show that our model captures the distinct functionalities of each region of human vision system.
Preliminary evaluations indicate that Brain3D can successfully identify the disordered brain regions in simulated scenarios.
arXiv Detail & Related papers (2024-05-24T06:06:11Z) - Learning Multimodal Volumetric Features for Large-Scale Neuron Tracing [72.45257414889478]
We aim to reduce human workload by predicting connectivity between over-segmented neuron pieces.
We first construct a dataset, named FlyTracing, that contains millions of pairwise connections of segments expanding the whole fly brain.
We propose a novel connectivity-aware contrastive learning method to generate dense volumetric EM image embedding.
arXiv Detail & Related papers (2024-01-05T19:45:12Z) - Learn to integrate parts for whole through correlated neural variability [8.173681663544757]
Sensory perception originates from the responses of sensory neurons, which react to a collection of sensory signals linked to physical attributes of a singular perceptual object.
Unraveling how the brain extracts perceptual information from these neuronal responses is a pivotal challenge in both computational neuroscience and machine learning.
We introduce a statistical mechanical theory, where perceptual information is first encoded in the correlated variability of sensory neurons and then reformatted into the firing rates of downstream neurons.
arXiv Detail & Related papers (2024-01-01T13:05:29Z) - Contrast, Attend and Diffuse to Decode High-Resolution Images from Brain
Activities [31.448924808940284]
We introduce a two-phase fMRI representation learning framework.
The first phase pre-trains an fMRI feature learner with a proposed Double-contrastive Mask Auto-encoder to learn denoised representations.
The second phase tunes the feature learner to attend to neural activation patterns most informative for visual reconstruction with guidance from an image auto-encoder.
arXiv Detail & Related papers (2023-05-26T19:16:23Z) - BrainBERT: Self-supervised representation learning for intracranial
recordings [18.52962864519609]
We create a reusable Transformer, BrainBERT, for intracranial recordings bringing modern representation learning approaches to neuroscience.
Much like in NLP and speech recognition, this Transformer enables classifying complex concepts, with higher accuracy and with much less data.
In the future, far more concepts will be decodable from neural recordings by using representation learning, potentially unlocking the brain like language models unlocked language.
arXiv Detail & Related papers (2023-02-28T07:40:37Z) - BrainCLIP: Bridging Brain and Visual-Linguistic Representation Via CLIP
for Generic Natural Visual Stimulus Decoding [51.911473457195555]
BrainCLIP is a task-agnostic fMRI-based brain decoding model.
It bridges the modality gap between brain activity, image, and text.
BrainCLIP can reconstruct visual stimuli with high semantic fidelity.
arXiv Detail & Related papers (2023-02-25T03:28:54Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
In the brain, information is encoded, transmitted and used to inform behaviour.
Neuromorphic circuits need to encode information in a way compatible to that used by populations of neuron in the brain.
arXiv Detail & Related papers (2022-12-08T15:16:04Z) - Explainable fMRI-based Brain Decoding via Spatial Temporal-pyramid Graph
Convolutional Network [0.8399688944263843]
Existing machine learning methods for fMRI-based brain decoding either suffer from low classification performance or poor explainability.
We propose a biologically inspired architecture, Spatial Temporal-pyramid Graph Convolutional Network (STpGCN), to capture the spatial-temporal graph representation of functional brain activities.
We conduct extensive experiments on fMRI data under 23 cognitive tasks from Human Connectome Project (HCP) S1200.
arXiv Detail & Related papers (2022-10-08T12:14:33Z) - Toward a realistic model of speech processing in the brain with
self-supervised learning [67.7130239674153]
Self-supervised algorithms trained on the raw waveform constitute a promising candidate.
We show that Wav2Vec 2.0 learns brain-like representations with as little as 600 hours of unlabelled speech.
arXiv Detail & Related papers (2022-06-03T17:01:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.