PDE-CNNs: Axiomatic Derivations and Applications
- URL: http://arxiv.org/abs/2403.15182v2
- Date: Thu, 18 Apr 2024 08:40:58 GMT
- Title: PDE-CNNs: Axiomatic Derivations and Applications
- Authors: Gijs Bellaard, Sei Sakata, Bart M. N. Smets, Remco Duits,
- Abstract summary: Group Convolutional Neural Networks (PDE-G-CNNs) utilize solvers of geometrically meaningful evolution PDEs as substitutes for the conventional components in G-CNNs.
We experimentally confirm for small networks that PDE-CNNs offer fewer parameters, increased performance, and better data efficiency when compared to CNNs.
- Score: 0.1874930567916036
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: PDE-based Group Convolutional Neural Networks (PDE-G-CNNs) utilize solvers of geometrically meaningful evolution PDEs as substitutes for the conventional components in G-CNNs. PDE-G-CNNs offer several key benefits all at once: fewer parameters, inherent equivariance, better performance, data efficiency, and geometric interpretability. In this article we focus on Euclidean equivariant PDE-G-CNNs where the feature maps are two dimensional throughout. We call this variant of the framework a PDE-CNN. From a machine learning perspective, we list several practically desirable axioms and derive from these which PDEs should be used in a PDE-CNN. Here our approach to geometric learning via PDEs is inspired by the axioms of classical linear and morphological scale-space theory, which we generalize by introducing semifield-valued signals. Furthermore, we experimentally confirm for small networks that PDE-CNNs offer fewer parameters, increased performance, and better data efficiency when compared to CNNs. We also investigate what effect the use of different semifields has on the performance of the models.
Related papers
- Unisolver: PDE-Conditional Transformers Are Universal PDE Solvers [55.0876373185983]
We present the Universal PDE solver (Unisolver) capable of solving a wide scope of PDEs.
Our key finding is that a PDE solution is fundamentally under the control of a series of PDE components.
Unisolver achieves consistent state-of-the-art results on three challenging large-scale benchmarks.
arXiv Detail & Related papers (2024-05-27T15:34:35Z) - RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
Physics-informed neural networks (PINNs) have been widely applied to solve partial differential equations (PDEs)
This paper proposes and theoretically studies a new training paradigm as region optimization.
A practical training algorithm, Region Optimized PINN (RoPINN), is seamlessly derived from this new paradigm.
arXiv Detail & Related papers (2024-05-23T09:45:57Z) - Solving PDEs on Spheres with Physics-Informed Convolutional Neural Networks [17.69666422395703]
Physics-informed neural networks (PINNs) have been demonstrated to be efficient in solving partial differential equations (PDEs)
In this paper, we establish rigorous analysis of the physics-informed convolutional neural network (PICNN) for solving PDEs on the sphere.
arXiv Detail & Related papers (2023-08-18T14:58:23Z) - Analysis of (sub-)Riemannian PDE-G-CNNs [1.9249287163937971]
Group equivariant convolutional neural networks (G-CNNs) have been successfully applied in geometric deep learning.
We show that the previously suggested approximative morphological kernels do not always accurately approximate the exact kernels.
We provide new theorems with better error estimates of the approximative kernels, and prove that they all carry the same reflectional symmetries as the exact ones.
arXiv Detail & Related papers (2022-10-03T13:47:47Z) - Physics-Aware Neural Networks for Boundary Layer Linear Problems [0.0]
Physics-Informed Neural Networks (PINNs) approximate the solution of general partial differential equations (PDEs) by adding them in some form as terms of the loss/cost of a Neural Network.
This paper explores PINNs for linear PDEs whose solutions may present one or more boundary layers.
arXiv Detail & Related papers (2022-07-15T21:15:06Z) - Fourier Neural Operator with Learned Deformations for PDEs on General Geometries [75.91055304134258]
We propose a new framework, viz., geo-FNO, to solve PDEs on arbitrary geometries.
Geo-FNO learns to deform the input (physical) domain, which may be irregular, into a latent space with a uniform grid.
We consider a variety of PDEs such as the Elasticity, Plasticity, Euler's, and Navier-Stokes equations, and both forward modeling and inverse design problems.
arXiv Detail & Related papers (2022-07-11T21:55:47Z) - Anisotropic, Sparse and Interpretable Physics-Informed Neural Networks
for PDEs [0.0]
We present ASPINN, an anisotropic extension of our earlier work called SPINN--Sparse, Physics-informed, and Interpretable Neural Networks--to solve PDEs.
ASPINNs generalize radial basis function networks.
We also streamline the training of ASPINNs into a form that is closer to that of supervised learning algorithms.
arXiv Detail & Related papers (2022-07-01T12:24:43Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
Physics-informed neural networks (PINNs) provide a deep learning framework for numerically solving partial differential equations (PDEs)
We propose the generative adversarial neural network (GA-PINN), which integrates the generative adversarial (GA) mechanism with the structure of PINNs.
Inspired from the weighting strategy of the Adaboost method, we then introduce a point-weighting (PW) method to improve the training efficiency of PINNs.
arXiv Detail & Related papers (2022-05-18T06:50:44Z) - Lie Point Symmetry Data Augmentation for Neural PDE Solvers [69.72427135610106]
We present a method, which can partially alleviate this problem, by improving neural PDE solver sample complexity.
In the context of PDEs, it turns out that we are able to quantitatively derive an exhaustive list of data transformations.
We show how it can easily be deployed to improve neural PDE solver sample complexity by an order of magnitude.
arXiv Detail & Related papers (2022-02-15T18:43:17Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
We introduce dNNsolve, that makes use of dual Neural Networks to solve ODEs/PDEs.
We show that dNNsolve is capable of solving a broad range of ODEs/PDEs in 1, 2 and 3 spacetime dimensions.
arXiv Detail & Related papers (2021-03-15T19:14:41Z) - PDE-based Group Equivariant Convolutional Neural Networks [1.949912057689623]
We present a PDE-based framework that generalizes Group equivariant Convolutional Neural Networks (G-CNNs)
In this framework, a network layer is seen as a set of PDE-solvers where geometrically meaningful PDE-coefficients become the layer's trainable weights.
We present experiments to demonstrate the strength of the proposed PDE-G-CNNs in increasing the performance of deep learning based imaging applications.
arXiv Detail & Related papers (2020-01-24T15:00:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.