Solving PDEs on Spheres with Physics-Informed Convolutional Neural Networks
- URL: http://arxiv.org/abs/2308.09605v2
- Date: Mon, 5 Aug 2024 08:53:12 GMT
- Title: Solving PDEs on Spheres with Physics-Informed Convolutional Neural Networks
- Authors: Guanhang Lei, Zhen Lei, Lei Shi, Chenyu Zeng, Ding-Xuan Zhou,
- Abstract summary: Physics-informed neural networks (PINNs) have been demonstrated to be efficient in solving partial differential equations (PDEs)
In this paper, we establish rigorous analysis of the physics-informed convolutional neural network (PICNN) for solving PDEs on the sphere.
- Score: 17.69666422395703
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physics-informed neural networks (PINNs) have been demonstrated to be efficient in solving partial differential equations (PDEs) from a variety of experimental perspectives. Some recent studies have also proposed PINN algorithms for PDEs on surfaces, including spheres. However, theoretical understanding of the numerical performance of PINNs, especially PINNs on surfaces or manifolds, is still lacking. In this paper, we establish rigorous analysis of the physics-informed convolutional neural network (PICNN) for solving PDEs on the sphere. By using and improving the latest approximation results of deep convolutional neural networks and spherical harmonic analysis, we prove an upper bound for the approximation error with respect to the Sobolev norm. Subsequently, we integrate this with innovative localization complexity analysis to establish fast convergence rates for PICNN. Our theoretical results are also confirmed and supplemented by our experiments. In light of these findings, we explore potential strategies for circumventing the curse of dimensionality that arises when solving high-dimensional PDEs.
Related papers
- Adapting Physics-Informed Neural Networks for Bifurcation Detection in Ecological Migration Models [0.16442870218029523]
In this study, we explore the application of Physics-Informed Neural Networks (PINNs) to the analysis of bifurcation phenomena in ecological migration models.
By integrating the fundamental principles of diffusion-advection-reaction equations with deep learning techniques, we address the complexities of species migration dynamics.
arXiv Detail & Related papers (2024-09-01T08:00:31Z) - RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
Physics-informed neural networks (PINNs) have been widely applied to solve partial differential equations (PDEs)
This paper proposes and theoretically studies a new training paradigm as region optimization.
A practical training algorithm, Region Optimized PINN (RoPINN), is seamlessly derived from this new paradigm.
arXiv Detail & Related papers (2024-05-23T09:45:57Z) - Learning Traveling Solitary Waves Using Separable Gaussian Neural
Networks [0.9065034043031668]
We apply a machine-learning approach to learn traveling solitary waves across various families of partial differential equations (PDEs)
Our approach integrates a novel interpretable neural network (NN) architecture into the framework of Physics-Informed Neural Networks (PINNs)
arXiv Detail & Related papers (2024-03-07T20:16:18Z) - Architectural Strategies for the optimization of Physics-Informed Neural
Networks [30.92757082348805]
Physics-informed neural networks (PINNs) offer a promising avenue for tackling both forward and inverse problems in partial differential equations (PDEs)
Despite their remarkable empirical success, PINNs have garnered a reputation for their notorious training challenges across a spectrum of PDEs.
arXiv Detail & Related papers (2024-02-05T04:15:31Z) - Lie Point Symmetry and Physics Informed Networks [59.56218517113066]
We propose a loss function that informs the network about Lie point symmetries in the same way that PINN models try to enforce the underlying PDE through a loss function.
Our symmetry loss ensures that the infinitesimal generators of the Lie group conserve the PDE solutions.
Empirical evaluations indicate that the inductive bias introduced by the Lie point symmetries of the PDEs greatly boosts the sample efficiency of PINNs.
arXiv Detail & Related papers (2023-11-07T19:07:16Z) - Physics-Aware Neural Networks for Boundary Layer Linear Problems [0.0]
Physics-Informed Neural Networks (PINNs) approximate the solution of general partial differential equations (PDEs) by adding them in some form as terms of the loss/cost of a Neural Network.
This paper explores PINNs for linear PDEs whose solutions may present one or more boundary layers.
arXiv Detail & Related papers (2022-07-15T21:15:06Z) - Enforcing Continuous Physical Symmetries in Deep Learning Network for
Solving Partial Differential Equations [3.6317085868198467]
We introduce a new method, symmetry-enhanced physics informed neural network (SPINN) where the invariant surface conditions induced by the Lie symmetries of PDEs are embedded into the loss function of PINN.
We show that SPINN performs better than PINN with fewer training points and simpler architecture of neural network.
arXiv Detail & Related papers (2022-06-19T00:44:22Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
Physics-informed neural networks (PINNs) are revolutionizing science and engineering practice by bringing together the power of deep learning to bear on scientific computation.
Here, we propose Auto-PINN, which employs Neural Architecture Search (NAS) techniques to PINN design.
A comprehensive set of pre-experiments using standard PDE benchmarks allows us to probe the structure-performance relationship in PINNs.
arXiv Detail & Related papers (2022-05-27T03:24:31Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
Physics-informed neural networks (PINNs) provide a deep learning framework for numerically solving partial differential equations (PDEs)
We propose the generative adversarial neural network (GA-PINN), which integrates the generative adversarial (GA) mechanism with the structure of PINNs.
Inspired from the weighting strategy of the Adaboost method, we then introduce a point-weighting (PW) method to improve the training efficiency of PINNs.
arXiv Detail & Related papers (2022-05-18T06:50:44Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
We develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks.
In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation.
Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is two orders of magnitude faster.
arXiv Detail & Related papers (2022-02-18T18:07:54Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
We introduce dNNsolve, that makes use of dual Neural Networks to solve ODEs/PDEs.
We show that dNNsolve is capable of solving a broad range of ODEs/PDEs in 1, 2 and 3 spacetime dimensions.
arXiv Detail & Related papers (2021-03-15T19:14:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.