Multi-perspective Memory Enhanced Network for Identifying Key Nodes in Social Networks
- URL: http://arxiv.org/abs/2403.15235v1
- Date: Fri, 22 Mar 2024 14:29:03 GMT
- Title: Multi-perspective Memory Enhanced Network for Identifying Key Nodes in Social Networks
- Authors: Qiang Zhang, Jiawei Liu, Fanrui Zhang, Xiaoling Zhu, Zheng-Jun Zha,
- Abstract summary: We propose a novel Multi-perspective Memory Enhanced Network (MMEN) for identifying key nodes in social networks.
MMEN mines key nodes from multiple perspectives and utilizes memory networks to store historical information.
Our method significantly outperforms previous methods.
- Score: 51.54002032659713
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Identifying key nodes in social networks plays a crucial role in timely blocking false information. Existing key node identification methods usually consider node influence only from the propagation structure perspective and have insufficient generalization ability to unknown scenarios. In this paper, we propose a novel Multi-perspective Memory Enhanced Network (MMEN) for identifying key nodes in social networks, which mines key nodes from multiple perspectives and utilizes memory networks to store historical information. Specifically, MMEN first constructs two propagation networks from the perspectives of user attributes and propagation structure and updates node feature representations using graph attention networks. Meanwhile, the memory network is employed to store information of similar subgraphs, enhancing the model's generalization performance in unknown scenarios. Finally, MMEN applies adaptive weights to combine the node influence of the two propagation networks to select the ultimate key nodes. Extensive experiments demonstrate that our method significantly outperforms previous methods.
Related papers
- Topic-aware latent models for representation learning on networks [5.304857921982132]
We introduce TNE, a generic framework to enhance the embeddings of nodes acquired by means of random walk-based approaches with topic-based information.
We evaluate our methodology in two downstream tasks: node classification and link prediction.
arXiv Detail & Related papers (2021-11-10T08:52:52Z) - Identifying Influential Nodes in Two-mode Data Networks using Formal
Concept Analysis [0.0]
Bi-face (BF) is a new bipartite centrality measurement for identifying important nodes in two-mode networks.
Unlike off-the shelf centrality indices, it quantifies how a node has a cohesive-substructure influence on its neighbour nodes via bicliques.
Our experiments on several real-world and synthetic networks show the efficiency of BF over existing prominent bipartite centrality measures.
arXiv Detail & Related papers (2021-09-07T23:57:05Z) - Reasoning Graph Networks for Kinship Verification: from Star-shaped to
Hierarchical [85.0376670244522]
We investigate the problem of facial kinship verification by learning hierarchical reasoning graph networks.
We develop a Star-shaped Reasoning Graph Network (S-RGN) to exploit more powerful and flexible capacity.
We also develop a Hierarchical Reasoning Graph Network (H-RGN) to exploit more powerful and flexible capacity.
arXiv Detail & Related papers (2021-09-06T03:16:56Z) - MUSE: Multi-faceted Attention for Signed Network Embedding [4.442695760653947]
Signed network embedding is an approach to learn low-dimensional representations of nodes in signed networks with both positive and negative links.
We propose MUSE, a MUlti-faceted attention-based Signed network Embedding framework to tackle this problem.
arXiv Detail & Related papers (2021-04-29T16:09:35Z) - Node2Seq: Towards Trainable Convolutions in Graph Neural Networks [59.378148590027735]
We propose a graph network layer, known as Node2Seq, to learn node embeddings with explicitly trainable weights for different neighboring nodes.
For a target node, our method sorts its neighboring nodes via attention mechanism and then employs 1D convolutional neural networks (CNNs) to enable explicit weights for information aggregation.
In addition, we propose to incorporate non-local information for feature learning in an adaptive manner based on the attention scores.
arXiv Detail & Related papers (2021-01-06T03:05:37Z) - Decoupled Variational Embedding for Signed Directed Networks [39.3449157396596]
We propose to learn more representative node embeddings by simultaneously capturing the first-order and high-order topology in signed directed networks.
In particular, we reformulate the representation learning problem on signed directed networks from a variational auto-encoding perspective.
Extensive experiments are conducted on three widely used real-world datasets.
arXiv Detail & Related papers (2020-08-28T02:48:15Z) - Graph Prototypical Networks for Few-shot Learning on Attributed Networks [72.31180045017835]
We propose a graph meta-learning framework -- Graph Prototypical Networks (GPN)
GPN is able to perform textitmeta-learning on an attributed network and derive a highly generalizable model for handling the target classification task.
arXiv Detail & Related papers (2020-06-23T04:13:23Z) - Unsupervised Differentiable Multi-aspect Network Embedding [52.981277420394846]
We propose a novel end-to-end framework for multi-aspect network embedding, called asp2vec.
Our proposed framework can be readily extended to heterogeneous networks.
arXiv Detail & Related papers (2020-06-07T19:26:20Z) - Temporal Network Representation Learning via Historical Neighborhoods
Aggregation [28.397309507168128]
We propose the Embedding via Historical Neighborhoods Aggregation (EHNA) algorithm.
We first propose a temporal random walk that can identify relevant nodes in historical neighborhoods.
Then we apply a deep learning model which uses a custom attention mechanism to induce node embeddings.
arXiv Detail & Related papers (2020-03-30T04:18:48Z) - GPS-Net: Graph Property Sensing Network for Scene Graph Generation [91.60326359082408]
Scene graph generation (SGG) aims to detect objects in an image along with their pairwise relationships.
GPS-Net fully explores three properties for SGG: edge direction information, the difference in priority between nodes, and the long-tailed distribution of relationships.
GPS-Net achieves state-of-the-art performance on three popular databases: VG, OI, and VRD by significant gains under various settings and metrics.
arXiv Detail & Related papers (2020-03-29T07:22:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.