論文の概要: Spectral Motion Alignment for Video Motion Transfer using Diffusion Models
- arxiv url: http://arxiv.org/abs/2403.15249v1
- Date: Fri, 22 Mar 2024 14:47:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 16:59:49.719838
- Title: Spectral Motion Alignment for Video Motion Transfer using Diffusion Models
- Title(参考訳): 拡散モデルを用いた映像移動のためのスペクトル運動アライメント
- Authors: Geon Yeong Park, Hyeonho Jeong, Sang Wan Lee, Jong Chul Ye,
- Abstract要約: スペクトル運動アライメント(英: Spectral Motion Alignment、SMA)は、フーリエ変換とウェーブレット変換を用いて運動ベクトルを洗練・整列するフレームワークである。
SMAは周波数領域の正規化を取り入れて動きパターンを学習し、全体フレームのグローバルな動きのダイナミクスの学習を容易にする。
大規模な実験は、様々なビデオカスタマイズフレームワーク間の計算効率と互換性を維持しながら、モーション転送を改善するSMAの有効性を示す。
- 参考スコア(独自算出の注目度): 54.32923808964701
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The evolution of diffusion models has greatly impacted video generation and understanding. Particularly, text-to-video diffusion models (VDMs) have significantly facilitated the customization of input video with target appearance, motion, etc. Despite these advances, challenges persist in accurately distilling motion information from video frames. While existing works leverage the consecutive frame residual as the target motion vector, they inherently lack global motion context and are vulnerable to frame-wise distortions. To address this, we present Spectral Motion Alignment (SMA), a novel framework that refines and aligns motion vectors using Fourier and wavelet transforms. SMA learns motion patterns by incorporating frequency-domain regularization, facilitating the learning of whole-frame global motion dynamics, and mitigating spatial artifacts. Extensive experiments demonstrate SMA's efficacy in improving motion transfer while maintaining computational efficiency and compatibility across various video customization frameworks.
- Abstract(参考訳): 拡散モデルの進化はビデオ生成と理解に大きな影響を与えた。
特に、テキスト・ビデオ拡散モデル(VDM)は、ターゲットの外観や動きなどの入力ビデオのカスタマイズを著しく促進している。
これらの進歩にもかかわらず、ビデオフレームから運動情報を正確に蒸留することは困難である。
既存の研究では、連続したフレーム残差を目標運動ベクトルとして利用しているが、本質的にはグローバルな動きコンテキストが欠如しており、フレームの歪みに弱い。
これを解決するために、フーリエ変換とウェーブレット変換を用いて動きベクトルを洗練・整列する新しいフレームワークであるスペクトル運動アライメント(SMA)を提案する。
SMAは、周波数領域の正規化を導入し、全フレームのグローバルな運動力学の学習を容易にし、空間的アーティファクトを緩和することで、動きパターンを学習する。
大規模な実験は、様々なビデオカスタマイズフレームワーク間の計算効率と互換性を維持しながら、モーション転送を改善するSMAの有効性を示す。
関連論文リスト
- MotionClone: Training-Free Motion Cloning for Controllable Video Generation [41.621147782128396]
MotionCloneは、参照ビデオから多目的なモーションコントロールビデオ生成までのモーションクローンを可能にする、トレーニング不要のフレームワークである。
MotionCloneは、大域的なカメラの動きと局所的な物体の動きの両方の習熟度を示し、動きの忠実さ、テキストアライメント、時間的一貫性の点で顕著に優れている。
論文 参考訳(メタデータ) (2024-06-08T03:44:25Z) - Animate Your Motion: Turning Still Images into Dynamic Videos [58.63109848837741]
本稿では,マルチモーダル入力を管理する新しい手法であるScene and Motion Conditional Diffusion (SMCD)を紹介する。
SMCDは、認識されたモーションコンディショニングモジュールを組み込み、シーン条件を統合するための様々なアプローチを調査する。
我々のデザインは映像の品質、動きの精度、セマンティック・コヒーレンスを大幅に向上させる。
論文 参考訳(メタデータ) (2024-03-15T10:36:24Z) - TrackDiffusion: Tracklet-Conditioned Video Generation via Diffusion Models [75.20168902300166]
微粒な軌跡条件の運動制御が可能な新しい映像生成フレームワークであるTrackDiffusionを提案する。
TrackDiffusionの重要なコンポーネントは、複数のオブジェクトのフレーム間の一貫性を明確に保証するインスタンスエンハンサーである。
TrackDiffusionによって生成されたビデオシーケンスは、視覚知覚モデルのトレーニングデータとして使用できる。
論文 参考訳(メタデータ) (2023-12-01T15:24:38Z) - VMC: Video Motion Customization using Temporal Attention Adaption for
Text-to-Video Diffusion Models [58.93124686141781]
Video Motion Customization (VMC) はビデオ拡散モデルに時間的注意層を適応させる新しいワンショットチューニング手法である。
本研究では, 連続するフレーム間の残留ベクトルを運動基準として用いた新しい運動蒸留法を提案する。
実世界のさまざまな動きや状況にまたがる最先端のビデオ生成モデルに対して,本手法の有効性を検証した。
論文 参考訳(メタデータ) (2023-12-01T06:50:11Z) - Fine-Grained Spatiotemporal Motion Alignment for Contrastive Video Representation Learning [16.094271750354835]
モーション情報は、堅牢で一般化されたビデオ表現に不可欠である。
近年の研究では、ビデオコントラスト学習における動き情報の源として、フレーム差が採用されている。
本稿では,適切な動き情報を導入可能なフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-01T07:03:27Z) - LaMD: Latent Motion Diffusion for Video Generation [69.4111397077229]
LaMDフレームワークは、モーション分解されたビデオオートエンコーダと拡散に基づくモーションジェネレータで構成される。
その結果、LaMDはダイナミックスから高度に制御可能な動きに至るまで、幅広い動きを持つ高品質なビデオを生成することがわかった。
論文 参考訳(メタデータ) (2023-04-23T10:32:32Z) - Learning Variational Motion Prior for Video-based Motion Capture [31.79649766268877]
ビデオに基づくモーションキャプチャーのための新しい変分動作先行学習手法(VMP)を提案する。
我々のフレームワークはフレームワイドポーズ推定における時間的ジッタリングと障害モードを効果的に削減できる。
公開データセットとインザワイルドビデオの両方を用いた実験により、我々のフレームワークの有効性と一般化能力が実証された。
論文 参考訳(メタデータ) (2022-10-27T02:45:48Z) - Self-supervised Motion Learning from Static Images [36.85209332144106]
Motion from Static Images (MoSI) はモーション情報をエンコードすることを学ぶ。
MoSIは、下流のデータセットを微調整することなく、大きな動きを持つ領域を発見することができる。
下流のデータセットを微調整することなく、MoSIが大きな動きを持つ領域を発見できることを実証します。
論文 参考訳(メタデータ) (2021-04-01T03:55:50Z) - MotionRNN: A Flexible Model for Video Prediction with Spacetime-Varying
Motions [70.30211294212603]
本稿では,空間と時間の両方に連続する時空変動を予測できる新たな次元からビデオ予測を行う。
本研究では,動きの複雑な変動を捉え,時空変化に適応できるMotionRNNフレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-03T08:11:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。