Contact interactions, self-adjoint extensions, and low-energy scattering
- URL: http://arxiv.org/abs/2403.15290v1
- Date: Fri, 22 Mar 2024 15:39:56 GMT
- Title: Contact interactions, self-adjoint extensions, and low-energy scattering
- Authors: Daniel R. DeSena, Brian C. Tiburzi,
- Abstract summary: We show that the one-dimensional scattering problem is surprisingly intricate.
We show that the families of self-adjoint extensions correspond to a coupled system of symmetric and antisymmetric outgoing waves.
As an application, the spectrum of a general point interaction with a harmonic trap is solved in one dimension.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Low-energy scattering is well described by the effective-range expansion. In quantum mechanics, a tower of contact interactions can generate terms in this expansion after renormalization. Scattering parameters are also encoded in the self-adjoint extension of the Hamiltonian. We briefly review this well-known result for two particles with s-wave interactions using impenetrable self-adjoint extensions, including the case of harmonically trapped two-particle states. By contrast, the one-dimensional scattering problem is surprisingly intricate. We show that the families of self-adjoint extensions correspond to a coupled system of symmetric and antisymmetric outgoing waves, which is diagonalized by an SU(2) transformation that accounts for mixing and a relative phase. This is corroborated by an effective theory computation that includes all four energy-independent contact interactions. The equivalence of various one-dimensional contact interactions is discussed and scrutinized from the perspective of renormalization. As an application, the spectrum of a general point interaction with a harmonic trap is solved in one dimension.
Related papers
- Measurement-induced transitions for interacting fermions [43.04146484262759]
We develop a field-theoretical framework that provides a unified approach to observables characterizing entanglement and charge fluctuations.
Within this framework, we derive a replicated Keldysh non-linear sigma model (NLSM)
By using the renormalization-group approach for the NLSM, we determine the phase diagram and the scaling of physical observables.
arXiv Detail & Related papers (2024-10-09T18:00:08Z) - Quantized Thouless pumps protected by interactions in dimerized Rydberg tweezer arrays [41.94295877935867]
In the noninteracting case, quantized Thouless pumps can only occur when a topological singularity is encircled adiabatically.
In the presence of interactions, such topological transport can even persist for exotic paths in which the system gets arbitrarily close to the noninteracting singularity.
arXiv Detail & Related papers (2024-02-14T16:58:21Z) - Axionlike Dark Matter Model Involving Two-Phase Structure and
Two-Particle Composites (Dimers) [0.0]
We argue that the axionlike self-interaction of ultralight bosons ensures the existence of rarefied and dense phases in the DM halo core of (dwarf) galaxies.
To produce a two-particle composite with low positive energy and a finite lifetime, we appeal to the resonant transition of oneally free particle of a pair from an open channel to the closed channel.
Using the Feshbach resonance concept, the problem of two-channel quantum mechanics is solved in the presence of a small external influence.
arXiv Detail & Related papers (2023-09-06T18:10:08Z) - Nonlocal thermoelectric detection of interaction and correlations in
edge states [62.997667081978825]
We propose the nonlocal thermoelectric response as a direct indicator of the presence of interactions, nonthermal states and the effect of correlations.
A setup with two controllable quantum point contacts allows thermoelectricity to monitor the interacting system thermalisation.
arXiv Detail & Related papers (2023-07-18T16:28:59Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Probing particle-particle correlation in harmonic traps with twisted
light [0.0]
We explore the potential of twisted light as a tool to unveil many-body effects in parabolically confined systems.
We demonstrate the ability of the proposed twisted light probe to capture the transition of interacting fermions into a strongly correlated regime.
These features, observed in exact calculations for two electrons, are reproduced in adiabatic Time Dependent Density Functional Theory simulations.
arXiv Detail & Related papers (2021-05-12T16:07:59Z) - Few-body correlations in two-dimensional Bose and Fermi ultracold
mixtures [0.0]
Few-body correlations emerging in two-dimensional harmonically trapped mixtures are investigated.
The presence of the trap leads to the formation of atom-dimer and trap states, in addition to trimers.
For thermal gases, a gradual suppression of the involved two- and three-body correlations is evinced manifesting the impact of thermal effects.
arXiv Detail & Related papers (2021-05-11T13:40:54Z) - Intercomponent entanglement entropy and spectrum in binary Bose-Einstein
condensates [4.511923587827301]
We study the entanglement entropy and spectrum between components in binary Bose-Einstein condensates in $d$ spatial dimensions.
We employ effective field theory to show that the entanglement spectrum exhibits an anomalous square-root dispersion relation in the presence of an intercomponent tunneling (a Rabi coupling) and a gapped dispersion relation in its absence.
arXiv Detail & Related papers (2020-09-07T08:58:00Z) - Models of zero-range interaction for the bosonic trimer at unitarity [91.3755431537592]
We present the construction of quantum Hamiltonians for a three-body system consisting of identical bosons mutually coupled by a two-body interaction of zero range.
For a large part of the presentation, infinite scattering length will be considered.
arXiv Detail & Related papers (2020-06-03T17:54:43Z) - Stationary and dynamical properties of two harmonically trapped bosons
in the crossover from two dimensions to one [0.0]
We unravel the stationary properties and the interaction quench dynamics of two bosons, confined in a two-dimensional anisotropic harmonic trap.
The relation between the two and the one dimensional scattering lengths as well as the Tan contacts is established.
The interaction quench dynamics from attractive to repulsive values and vice versa is investigated for various anisotropies.
arXiv Detail & Related papers (2020-01-29T08:31:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.