Sphere Neural-Networks for Rational Reasoning
- URL: http://arxiv.org/abs/2403.15297v3
- Date: Mon, 24 Jun 2024 19:45:42 GMT
- Title: Sphere Neural-Networks for Rational Reasoning
- Authors: Tiansi Dong, Mateja Jamnik, Pietro LiĆ²,
- Abstract summary: We present a novel extension by generalising computational building blocks from vectors to spheres.
We propose Sphere Neural Networks (SphNNs) for human-like reasoning through model construction and inspection.
SphNNs can evolve into various types of reasoning, such as rationality-temporal reasoning, logical reasoning with negation and disjunction, event reasoning, neuro-symbolic unification, and humour understanding.
- Score: 24.591858077975548
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The success of Large Language Models (LLMs), e.g., ChatGPT, is witnessed by their planetary popularity, their capability of human-like communication, and also by their steadily improved reasoning performance. However, it remains unclear whether LLMs reason. It is an open problem how traditional neural networks can be qualitatively extended to go beyond the statistic paradigm and achieve high-level cognition. Here, we present a novel qualitative extension by generalising computational building blocks from vectors to spheres. We propose Sphere Neural Networks (SphNNs) for human-like reasoning through model construction and inspection, and develop SphNN for syllogistic reasoning, a microcosm of human rationality. SphNN is a hierarchical neuro-symbolic Kolmogorov-Arnold geometric GNN, and uses a neuro-symbolic transition map of neighbourhood spatial relations to transform the current sphere configuration towards the target. SphNN is the first neural model that can determine the validity of long-chained syllogistic reasoning in one epoch without training data, with the worst computational complexity of O(N). SphNN can evolve into various types of reasoning, such as spatio-temporal reasoning, logical reasoning with negation and disjunction, event reasoning, neuro-symbolic unification, and humour understanding (the highest level of cognition). All these suggest a new kind of Herbert A. Simon's scissors with two neural blades. SphNNs will tremendously enhance interdisciplinary collaborations to develop the two neural blades and realise deterministic neural reasoning and human-bounded rationality and elevate LLMs to reliable psychological AI. This work suggests that the non-zero radii of spheres are the missing components that prevent traditional deep-learning systems from reaching the realm of rational reasoning and cause LLMs to be trapped in the swamp of hallucination.
Related papers
- Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - Temporal Spiking Neural Networks with Synaptic Delay for Graph Reasoning [91.29876772547348]
Spiking neural networks (SNNs) are investigated as biologically inspired models of neural computation.
This paper reveals that SNNs, when amalgamated with synaptic delay and temporal coding, are proficient in executing (knowledge) graph reasoning.
arXiv Detail & Related papers (2024-05-27T05:53:30Z) - A survey on learning models of spiking neural membrane systems and spiking neural networks [0.0]
Spiking neural networks (SNN) are a biologically inspired model of neural networks with certain brain-like properties.
In SNN, communication between neurons takes place through the spikes and spike trains.
SNPS can be considered a branch of SNN based more on the principles of formal automata.
arXiv Detail & Related papers (2024-03-27T14:26:41Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Exploiting Noise as a Resource for Computation and Learning in Spiking
Neural Networks [32.0086664373154]
This study introduces the noisy spiking neural network (NSNN) and the noise-driven learning rule (NDL)
NSNN provides a theoretical framework that yields scalable, flexible, and reliable computation.
arXiv Detail & Related papers (2023-05-25T13:21:26Z) - Control of synaptic plasticity in neural networks [0.0]
The brain is a nonlinear and highly Recurrent Neural Network (RNN)
The proposed framework involves a new NN-based actor-critic method which is used to simulate the error feedback loop systems.
arXiv Detail & Related papers (2023-03-10T13:36:31Z) - Brain-inspired Graph Spiking Neural Networks for Commonsense Knowledge
Representation and Reasoning [11.048601659933249]
How neural networks in the human brain represent commonsense knowledge is an important research topic in neuroscience, cognitive science, psychology, and artificial intelligence.
This work investigates how population encoding and spiking timing-dependent plasticity (STDP) mechanisms can be integrated into the learning of spiking neural networks.
The neuron populations of different communities together constitute the entire commonsense knowledge graph, forming a giant graph spiking neural network.
arXiv Detail & Related papers (2022-07-11T05:22:38Z) - Linear Leaky-Integrate-and-Fire Neuron Model Based Spiking Neural
Networks and Its Mapping Relationship to Deep Neural Networks [7.840247953745616]
Spiking neural networks (SNNs) are brain-inspired machine learning algorithms with merits such as biological plausibility and unsupervised learning capability.
This paper establishes a precise mathematical mapping between the biological parameters of the Linear Leaky-Integrate-and-Fire model (LIF)/SNNs and the parameters of ReLU-AN/Deep Neural Networks (DNNs)
arXiv Detail & Related papers (2022-05-31T17:02:26Z) - Knowledge Enhanced Neural Networks for relational domains [83.9217787335878]
We focus on a specific method, KENN, a Neural-Symbolic architecture that injects prior logical knowledge into a neural network.
In this paper, we propose an extension of KENN for relational data.
arXiv Detail & Related papers (2022-05-31T13:00:34Z) - Deep Reinforcement Learning Guided Graph Neural Networks for Brain
Network Analysis [61.53545734991802]
We propose a novel brain network representation framework, namely BN-GNN, which searches for the optimal GNN architecture for each brain network.
Our proposed BN-GNN improves the performance of traditional GNNs on different brain network analysis tasks.
arXiv Detail & Related papers (2022-03-18T07:05:27Z) - Neural Networks Enhancement with Logical Knowledge [83.9217787335878]
We propose an extension of KENN for relational data.
The results show that KENN is capable of increasing the performances of the underlying neural network even in the presence relational data.
arXiv Detail & Related papers (2020-09-13T21:12:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.