A Wasserstein perspective of Vanilla GANs
- URL: http://arxiv.org/abs/2403.15312v2
- Date: Mon, 29 Jul 2024 07:24:12 GMT
- Title: A Wasserstein perspective of Vanilla GANs
- Authors: Lea Kunkel, Mathias Trabs,
- Abstract summary: Vanilla GANs are generalizations of Wasserstein GANs.
In particular, we obtain an oracle inequality for Vanilla GANs in Wasserstein distance.
We conclude a rate of convergence for Vanilla GANs as well as Wasserstein GANs as estimators of the unknown probability distribution.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The empirical success of Generative Adversarial Networks (GANs) caused an increasing interest in theoretical research. The statistical literature is mainly focused on Wasserstein GANs and generalizations thereof, which especially allow for good dimension reduction properties. Statistical results for Vanilla GANs, the original optimization problem, are still rather limited and require assumptions such as smooth activation functions and equal dimensions of the latent space and the ambient space. To bridge this gap, we draw a connection from Vanilla GANs to the Wasserstein distance. By doing so, existing results for Wasserstein GANs can be extended to Vanilla GANs. In particular, we obtain an oracle inequality for Vanilla GANs in Wasserstein distance. The assumptions of this oracle inequality are designed to be satisfied by network architectures commonly used in practice, such as feedforward ReLU networks. By providing a quantitative result for the approximation of a Lipschitz function by a feedforward ReLU network with bounded H\"older norm, we conclude a rate of convergence for Vanilla GANs as well as Wasserstein GANs as estimators of the unknown probability distribution.
Related papers
- Robust Estimation for Nonparametric Families via Generative Adversarial
Networks [92.64483100338724]
We provide a framework for designing Generative Adversarial Networks (GANs) to solve high dimensional robust statistics problems.
Our work extend these to robust mean estimation, second moment estimation, and robust linear regression.
In terms of techniques, our proposed GAN losses can be viewed as a smoothed and generalized Kolmogorov-Smirnov distance.
arXiv Detail & Related papers (2022-02-02T20:11:33Z) - Minimax Optimality (Probably) Doesn't Imply Distribution Learning for
GANs [44.4200799586461]
We show that standard cryptographic assumptions imply that this stronger condition is still insufficient.
Our techniques reveal a deep connection between GANs and PRGs, which we believe will lead to further insights into the computational landscape of GANs.
arXiv Detail & Related papers (2022-01-18T18:59:21Z) - Optimal 1-Wasserstein Distance for WGANs [2.1174215880331775]
We provide a thorough analysis of Wasserstein GANs (WGANs) in both the finite sample and regimes.
We derive in passing new results on optimal transport theory in the semi-discrete setting.
arXiv Detail & Related papers (2022-01-08T13:04:03Z) - Augmented Sliced Wasserstein Distances [55.028065567756066]
We propose a new family of distance metrics, called augmented sliced Wasserstein distances (ASWDs)
ASWDs are constructed by first mapping samples to higher-dimensional hypersurfaces parameterized by neural networks.
Numerical results demonstrate that the ASWD significantly outperforms other Wasserstein variants for both synthetic and real-world problems.
arXiv Detail & Related papers (2020-06-15T23:00:08Z) - Cumulant GAN [17.4556035872983]
We propose a novel loss function for training Generative Adversarial Networks (GANs)
We show that the corresponding optimization problem is equivalent to R'enyi divergence minimization.
We experimentally demonstrate that image generation is more robust relative to Wasserstein GAN.
arXiv Detail & Related papers (2020-06-11T17:23:02Z) - Some Theoretical Insights into Wasserstein GANs [0.0]
We propose some theoretical advances in the properties of Wasserstein GANs (WGANs)
We properly define the architecture of WGANs in the context of integral probability metrics parameterized by neural networks.
In a statistically-driven approach, we study the convergence of empirical WGANs as the sample size tends to infinity.
arXiv Detail & Related papers (2020-06-04T07:55:41Z) - Approximation Schemes for ReLU Regression [80.33702497406632]
We consider the fundamental problem of ReLU regression.
The goal is to output the best fitting ReLU with respect to square loss given to draws from some unknown distribution.
arXiv Detail & Related papers (2020-05-26T16:26:17Z) - Discriminator Contrastive Divergence: Semi-Amortized Generative Modeling
by Exploring Energy of the Discriminator [85.68825725223873]
Generative Adversarial Networks (GANs) have shown great promise in modeling high dimensional data.
We introduce the Discriminator Contrastive Divergence, which is well motivated by the property of WGAN's discriminator.
We demonstrate the benefits of significant improved generation on both synthetic data and several real-world image generation benchmarks.
arXiv Detail & Related papers (2020-04-05T01:50:16Z) - GANs with Conditional Independence Graphs: On Subadditivity of
Probability Divergences [70.30467057209405]
Generative Adversarial Networks (GANs) are modern methods to learn the underlying distribution of a data set.
GANs are designed in a model-free fashion where no additional information about the underlying distribution is available.
We propose a principled design of a model-based GAN that uses a set of simple discriminators on the neighborhoods of the Bayes-net/MRF.
arXiv Detail & Related papers (2020-03-02T04:31:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.