CR3DT: Camera-RADAR Fusion for 3D Detection and Tracking
- URL: http://arxiv.org/abs/2403.15313v2
- Date: Tue, 6 Aug 2024 15:58:35 GMT
- Title: CR3DT: Camera-RADAR Fusion for 3D Detection and Tracking
- Authors: Nicolas Baumann, Michael Baumgartner, Edoardo Ghignone, Jonas Kühne, Tobias Fischer, Yung-Hsu Yang, Marc Pollefeys, Michele Magno,
- Abstract summary: Camera-RADAR 3D Detection and Tracking (CR3DT) is a camera-RADAR fusion model for 3D object detection, and Multi-Object Tracking (MOT)
Building upon the foundations of the State-of-the-Art (SotA) camera-only BEVDet architecture, CR3DT demonstrates substantial improvements in both detection and tracking capabilities.
- Score: 40.630532348405595
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To enable self-driving vehicles accurate detection and tracking of surrounding objects is essential. While Light Detection and Ranging (LiDAR) sensors have set the benchmark for high-performance systems, the appeal of camera-only solutions lies in their cost-effectiveness. Notably, despite the prevalent use of Radio Detection and Ranging (RADAR) sensors in automotive systems, their potential in 3D detection and tracking has been largely disregarded due to data sparsity and measurement noise. As a recent development, the combination of RADARs and cameras is emerging as a promising solution. This paper presents Camera-RADAR 3D Detection and Tracking (CR3DT), a camera-RADAR fusion model for 3D object detection, and Multi-Object Tracking (MOT). Building upon the foundations of the State-of-the-Art (SotA) camera-only BEVDet architecture, CR3DT demonstrates substantial improvements in both detection and tracking capabilities, by incorporating the spatial and velocity information of the RADAR sensor. Experimental results demonstrate an absolute improvement in detection performance of 5.3% in mean Average Precision (mAP) and a 14.9% increase in Average Multi-Object Tracking Accuracy (AMOTA) on the nuScenes dataset when leveraging both modalities. CR3DT bridges the gap between high-performance and cost-effective perception systems in autonomous driving, by capitalizing on the ubiquitous presence of RADAR in automotive applications. The code is available at: https://github.com/ETH-PBL/CR3DT.
Related papers
- RCBEVDet++: Toward High-accuracy Radar-Camera Fusion 3D Perception Network [34.45694077040797]
We present a radar-camera fusion 3D object detection framework called BEEVDet.
RadarBEVNet encodes sparse radar points into a dense bird's-eye-view feature.
Our method achieves state-of-the-art radar-camera fusion results in 3D object detection, BEV semantic segmentation, and 3D multi-object tracking tasks.
arXiv Detail & Related papers (2024-09-08T05:14:27Z) - Boosting Online 3D Multi-Object Tracking through Camera-Radar Cross Check [24.764602040003403]
CRAFTBooster is a pioneering effort to enhance radar-camera fusion in the tracking stage, contributing to improved 3D MOT accuracy.
The superior experimental results on the K-Radaar dataset, which exhibit 5-6% on IDF1 tracking performance gain, validate the potential of effective sensor fusion in advancing autonomous driving.
arXiv Detail & Related papers (2024-07-18T23:32:27Z) - Sparse Points to Dense Clouds: Enhancing 3D Detection with Limited LiDAR Data [68.18735997052265]
We propose a balanced approach that combines the advantages of monocular and point cloud-based 3D detection.
Our method requires only a small number of 3D points, that can be obtained from a low-cost, low-resolution sensor.
The accuracy of 3D detection improves by 20% compared to the state-of-the-art monocular detection methods.
arXiv Detail & Related papers (2024-04-10T03:54:53Z) - Better Monocular 3D Detectors with LiDAR from the Past [64.6759926054061]
Camera-based 3D detectors often suffer inferior performance compared to LiDAR-based counterparts due to inherent depth ambiguities in images.
In this work, we seek to improve monocular 3D detectors by leveraging unlabeled historical LiDAR data.
We show consistent and significant performance gain across multiple state-of-the-art models and datasets with a negligible additional latency of 9.66 ms and a small storage cost.
arXiv Detail & Related papers (2024-04-08T01:38:43Z) - Vision meets mmWave Radar: 3D Object Perception Benchmark for Autonomous
Driving [30.456314610767667]
We introduce the CRUW3D dataset, including 66K synchronized and well-calibrated camera, radar, and LiDAR frames.
This kind of format can enable machine learning models to more reliable perception results after fusing the information or features between the camera and radar.
arXiv Detail & Related papers (2023-11-17T01:07:37Z) - CramNet: Camera-Radar Fusion with Ray-Constrained Cross-Attention for
Robust 3D Object Detection [12.557361522985898]
We propose a camera-radar matching network CramNet to fuse the sensor readings from camera and radar in a joint 3D space.
Our method supports training with sensor modality dropout, which leads to robust 3D object detection, even when a camera or radar sensor suddenly malfunctions on a vehicle.
arXiv Detail & Related papers (2022-10-17T17:18:47Z) - NVRadarNet: Real-Time Radar Obstacle and Free Space Detection for
Autonomous Driving [57.03126447713602]
We present a deep neural network (DNN) that detects dynamic obstacles and drivable free space using automotive RADAR sensors.
The network runs faster than real time on an embedded GPU and shows good generalization across geographic regions.
arXiv Detail & Related papers (2022-09-29T01:30:34Z) - Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object
Detection [58.81316192862618]
Two critical sensors for 3D perception in autonomous driving are the camera and the LiDAR.
fusing these two modalities can significantly boost the performance of 3D perception models.
We benchmark the state-of-the-art fusion methods for the first time.
arXiv Detail & Related papers (2022-05-30T09:35:37Z) - Domain and Modality Gaps for LiDAR-based Person Detection on Mobile
Robots [91.01747068273666]
This paper studies existing LiDAR-based person detectors with a particular focus on mobile robot scenarios.
Experiments revolve around the domain gap between driving and mobile robot scenarios, as well as the modality gap between 3D and 2D LiDAR sensors.
Results provide practical insights into LiDAR-based person detection and facilitate informed decisions for relevant mobile robot designs and applications.
arXiv Detail & Related papers (2021-06-21T16:35:49Z) - Rethinking of Radar's Role: A Camera-Radar Dataset and Systematic
Annotator via Coordinate Alignment [38.24705460170415]
We propose a new dataset, named CRUW, with a systematic annotator and performance evaluation system.
CRUW aims to classify and localize the objects in 3D purely from radar's radio frequency (RF) images.
To the best of our knowledge, CRUW is the first public large-scale dataset with a systematic annotation and evaluation system.
arXiv Detail & Related papers (2021-05-11T17:13:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.