Boosting Online 3D Multi-Object Tracking through Camera-Radar Cross Check
- URL: http://arxiv.org/abs/2407.13937v1
- Date: Thu, 18 Jul 2024 23:32:27 GMT
- Title: Boosting Online 3D Multi-Object Tracking through Camera-Radar Cross Check
- Authors: Sheng-Yao Kuan, Jen-Hao Cheng, Hsiang-Wei Huang, Wenhao Chai, Cheng-Yen Yang, Hugo Latapie, Gaowen Liu, Bing-Fei Wu, Jenq-Neng Hwang,
- Abstract summary: CRAFTBooster is a pioneering effort to enhance radar-camera fusion in the tracking stage, contributing to improved 3D MOT accuracy.
The superior experimental results on the K-Radaar dataset, which exhibit 5-6% on IDF1 tracking performance gain, validate the potential of effective sensor fusion in advancing autonomous driving.
- Score: 24.764602040003403
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the domain of autonomous driving, the integration of multi-modal perception techniques based on data from diverse sensors has demonstrated substantial progress. Effectively surpassing the capabilities of state-of-the-art single-modality detectors through sensor fusion remains an active challenge. This work leverages the respective advantages of cameras in perspective view and radars in Bird's Eye View (BEV) to greatly enhance overall detection and tracking performance. Our approach, Camera-Radar Associated Fusion Tracking Booster (CRAFTBooster), represents a pioneering effort to enhance radar-camera fusion in the tracking stage, contributing to improved 3D MOT accuracy. The superior experimental results on the K-Radaar dataset, which exhibit 5-6% on IDF1 tracking performance gain, validate the potential of effective sensor fusion in advancing autonomous driving.
Related papers
- RCBEVDet++: Toward High-accuracy Radar-Camera Fusion 3D Perception Network [34.45694077040797]
We present a radar-camera fusion 3D object detection framework called BEEVDet.
RadarBEVNet encodes sparse radar points into a dense bird's-eye-view feature.
Our method achieves state-of-the-art radar-camera fusion results in 3D object detection, BEV semantic segmentation, and 3D multi-object tracking tasks.
arXiv Detail & Related papers (2024-09-08T05:14:27Z) - Deep Learning-Based Robust Multi-Object Tracking via Fusion of mmWave Radar and Camera Sensors [6.166992288822812]
Multi-Object Tracking plays a critical role in ensuring safer and more efficient navigation through complex traffic scenarios.
This paper presents a novel deep learning-based method that integrates radar and camera data to enhance the accuracy and robustness of Multi-Object Tracking in autonomous driving systems.
arXiv Detail & Related papers (2024-07-10T21:09:09Z) - Better Monocular 3D Detectors with LiDAR from the Past [64.6759926054061]
Camera-based 3D detectors often suffer inferior performance compared to LiDAR-based counterparts due to inherent depth ambiguities in images.
In this work, we seek to improve monocular 3D detectors by leveraging unlabeled historical LiDAR data.
We show consistent and significant performance gain across multiple state-of-the-art models and datasets with a negligible additional latency of 9.66 ms and a small storage cost.
arXiv Detail & Related papers (2024-04-08T01:38:43Z) - CR3DT: Camera-RADAR Fusion for 3D Detection and Tracking [40.630532348405595]
Camera-RADAR 3D Detection and Tracking (CR3DT) is a camera-RADAR fusion model for 3D object detection, and Multi-Object Tracking (MOT)
Building upon the foundations of the State-of-the-Art (SotA) camera-only BEVDet architecture, CR3DT demonstrates substantial improvements in both detection and tracking capabilities.
arXiv Detail & Related papers (2024-03-22T16:06:05Z) - Cross-Cluster Shifting for Efficient and Effective 3D Object Detection
in Autonomous Driving [69.20604395205248]
We present a new 3D point-based detector model, named Shift-SSD, for precise 3D object detection in autonomous driving.
We introduce an intriguing Cross-Cluster Shifting operation to unleash the representation capacity of the point-based detector.
We conduct extensive experiments on the KITTI, runtime, and nuScenes datasets, and the results demonstrate the state-of-the-art performance of Shift-SSD.
arXiv Detail & Related papers (2024-03-10T10:36:32Z) - MVFAN: Multi-View Feature Assisted Network for 4D Radar Object Detection [15.925365473140479]
4D radar is recognized for its resilience and cost-effectiveness under adverse weather conditions.
Unlike LiDAR and cameras, radar remains unimpaired by harsh weather conditions.
We propose a framework for developing radar-based 3D object detection for autonomous vehicles.
arXiv Detail & Related papers (2023-10-25T06:10:07Z) - Joint object detection and re-identification for 3D obstacle
multi-camera systems [47.87501281561605]
This research paper introduces a novel modification to an object detection network that uses camera and lidar information.
It incorporates an additional branch designed for the task of re-identifying objects across adjacent cameras within the same vehicle.
The results underscore the superiority of this method over traditional Non-Maximum Suppression (NMS) techniques.
arXiv Detail & Related papers (2023-10-09T15:16:35Z) - Cross-Dataset Experimental Study of Radar-Camera Fusion in Bird's-Eye
View [12.723455775659414]
Radar and camera fusion systems have the potential to provide a highly robust and reliable perception system.
Recent advances in camera-based object detection offer new radar-camera fusion possibilities with bird's eye view feature maps.
We propose a novel and flexible fusion network and evaluate its performance on two datasets.
arXiv Detail & Related papers (2023-09-27T08:02:58Z) - HUM3DIL: Semi-supervised Multi-modal 3D Human Pose Estimation for
Autonomous Driving [95.42203932627102]
3D human pose estimation is an emerging technology, which can enable the autonomous vehicle to perceive and understand the subtle and complex behaviors of pedestrians.
Our method efficiently makes use of these complementary signals, in a semi-supervised fashion and outperforms existing methods with a large margin.
Specifically, we embed LiDAR points into pixel-aligned multi-modal features, which we pass through a sequence of Transformer refinement stages.
arXiv Detail & Related papers (2022-12-15T11:15:14Z) - Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object
Detection [58.81316192862618]
Two critical sensors for 3D perception in autonomous driving are the camera and the LiDAR.
fusing these two modalities can significantly boost the performance of 3D perception models.
We benchmark the state-of-the-art fusion methods for the first time.
arXiv Detail & Related papers (2022-05-30T09:35:37Z) - Learnable Online Graph Representations for 3D Multi-Object Tracking [156.58876381318402]
We propose a unified and learning based approach to the 3D MOT problem.
We employ a Neural Message Passing network for data association that is fully trainable.
We show the merit of the proposed approach on the publicly available nuScenes dataset by achieving state-of-the-art performance of 65.6% AMOTA and 58% fewer ID-switches.
arXiv Detail & Related papers (2021-04-23T17:59:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.