論文の概要: Predicting Parkinson's disease trajectory using clinical and functional MRI features: a reproduction and replication study
- arxiv url: http://arxiv.org/abs/2403.15405v2
- Date: Fri, 24 May 2024 11:33:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 20:46:55.327130
- Title: Predicting Parkinson's disease trajectory using clinical and functional MRI features: a reproduction and replication study
- Title(参考訳): 臨床および機能的MRI像を用いたパーキンソン病軌跡の予測 : 再生・複製研究
- Authors: Elodie Germani, Nikhil Baghwat, Mathieu Dugré, Rémi Gau, Albert Montillo, Kevin Nguyen, Andrzej Sokolowski, Madeleine Sharp, Jean-Baptiste Poline, Tristan Glatard,
- Abstract要約: パーキンソン病(英: Parkinson's disease、PD)は、神経変性疾患の1つで、病態はよく分かっていない。
最近、いくつかの神経イメージングバイオマーカーが研究されているが、これらはいくつかの可変性の原因に影響を受けやすい。
この研究は、PDの潜在的な神経イメージングバイオマーカーの複製可能性を研究する大規模なプロジェクトの一部である。
- 参考スコア(独自算出の注目度): 1.621204680136386
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Parkinson's disease (PD) is a common neurodegenerative disorder with a poorly understood physiopathology and no established biomarkers for the diagnosis of early stages and for prediction of disease progression. Several neuroimaging biomarkers have been studied recently, but these are susceptible to several sources of variability. In this context, an evaluation of the robustness of such biomarkers is essential. This study is part of a larger project investigating the replicability of potential neuroimaging biomarkers of PD. Here, we attempt to reproduce (same data, same method) and replicate (different data or method) the models described in Nguyen et al., 2021 to predict individual's PD current state and progression using demographic, clinical and neuroimaging features (fALFF and ReHo extracted from resting-state fMRI). We use the Parkinson's Progression Markers Initiative dataset (PPMI, ppmi-info.org), as in Nguyen et al.,2021 and aim to reproduce the original cohort, imaging features and machine learning models as closely as possible using the information available in the paper and the code. We also investigated methodological variations in cohort selection, feature extraction pipelines and sets of input features. The success of the reproduction was assessed using different criteria. Notably, we obtained significantly better than chance performance using the analysis pipeline closest to that in the original study (R2 > 0), which is consistent with its findings. The challenges encountered while reproducing and replicating the original work are likely explained by the complexity of neuroimaging studies, in particular in clinical settings. We provide recommendations to further facilitate the reproducibility of such studies in the future.
- Abstract(参考訳): パーキンソン病(英: Parkinson's disease,PD)は、神経変性疾患の1つで、病態がよく分かっておらず、早期の診断や疾患進行の予測に確立されたバイオマーカーがない。
最近、いくつかの神経イメージングバイオマーカーが研究されているが、これらはいくつかの可変性の原因に影響を受けやすい。
この文脈では、このようなバイオマーカーの堅牢性の評価が不可欠である。
この研究は、PDの潜在的な神経イメージングバイオマーカーの複製可能性を研究する大規模なプロジェクトの一部である。
そこで我々は,Nguyen et al ,2021 に記載されたモデルを用いて,人口,臨床,神経画像の特徴(静止状態 fMRI から抽出したfALFF と ReHo )を用いて,個人のPD 状態と進行を予測し,再現し,再現しようとする。
我々は、Nguyen et al ,2021のように、Parkinson's Progression Markers Initiativeデータセット(PPMI, ppmi-info.org)を使用し、論文やコードで利用可能な情報を使って、オリジナルのコホート、画像特徴、機械学習モデルを可能な限り正確に再現することを目的としている。
また,コホート選択,特徴抽出パイプライン,入力特徴の集合の方法論的変動について検討した。
再現の成功は異なる基準で評価された。
特に,本研究に最も近い解析パイプライン (R2 > 0) を用いて, 結果と一致した結果を得た。
オリジナルの作品を再生・複製する際の課題は、特に臨床環境での神経画像研究の複雑さによって説明される可能性が高い。
今後,このような研究の再現性を高めるための推奨事項を提示する。
関連論文リスト
- Discovering robust biomarkers of neurological disorders from functional MRI using graph neural networks: A Review [4.799269666410891]
本稿では、障害予測タスクのためのfMRIデータセットに対して、GNNとモデル説明可能性技術がどのように適用されてきたかを概説する。
その結果、ほとんどの研究にはパフォーマンスモデルがあるが、これらの研究で強調された健全な特徴は、同じ障害の研究によって大きく異なることが判明した。
これらのバイオマーカーのロバスト性を決定するために,客観的評価指標に基づく新しい標準を確立することを提案する。
論文 参考訳(メタデータ) (2024-05-01T15:29:55Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
同定された問題を解決するために,幾何制約付き確率的モデリング処理を提案する。
構成された埋め込み空間のレイアウトに適切な制約を課すために、重要な幾何学的性質のスイートを組み込む。
スペクトルグラフ理論法は、潜在的な新規クラスの数を推定するために考案された。
論文 参考訳(メタデータ) (2024-03-02T00:56:05Z) - Predicting Parkinson's disease evolution using deep learning [1.4610685586329806]
パーキンソン病は、世界の人口の1%近くで起こる神経疾患である。
パーキンソン病の診断に利用できる血液検査やバイオマーカーは1つもない。
進行の段階を特定するために設計されたAIツールは存在しない。
論文 参考訳(メタデータ) (2023-12-28T10:30:54Z) - Deep Learning for Time Series Classification of Parkinson's Disease Eye
Tracking Data [0.0]
我々は、現在最先端のディープラーニングアルゴリズムを用いて、ササード実験による視線追跡データを用いて、パーキンソン病の分類を行う。
モデルが分類課題を学習し、未知の対象に一般化できることが判明した。
論文 参考訳(メタデータ) (2023-11-28T00:03:18Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
本稿では,正常脳解剖のパッチベース推定法として拡散モデルの生成タスクを再構築する手法を提案する。
腫瘍と多発性硬化症について検討し,既存のベースラインと比較して25.1%の改善がみられた。
論文 参考訳(メタデータ) (2023-03-07T09:40:22Z) - Counterfactual Image Synthesis for Discovery of Personalized Predictive
Image Markers [0.293168019422713]
そこで本研究では,深部条件生成モデルを用いて,主観的疾患の進展に関連があるベースライン画像の局所像特徴を摂動させることが可能であることを示す。
本モデルでは, 臨床像を反映した画像特徴の変化により, 集団レベルでのMRI像の現況を予測し, 治療効果を検証した。
論文 参考訳(メタデータ) (2022-08-03T18:58:45Z) - ICAM-reg: Interpretable Classification and Regression with Feature
Attribution for Mapping Neurological Phenotypes in Individual Scans [3.589107822343127]
本研究では,生成的深層学習における最近の進歩を活かし,同時分類法,回帰法,特徴帰属法を開発した。
Alzheimer's Disease Neuroimaging InitiativeコホートにおけるMini-Mental State examination (MMSE)認知テストスコア予測のタスクについて検証した。
本稿では,生成したfaマップを用いて異常予測を説明し,回帰加群を組み込むことで潜在空間の不連続性を改善することを示す。
論文 参考訳(メタデータ) (2021-03-03T17:55:14Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Patch-based Brain Age Estimation from MR Images [64.66978138243083]
磁気共鳴画像(MRI)による脳年齢推定は、被験者の生物学的脳年齢と時系列年齢の違いを導出する。
より高年齢の神経変性を早期に検出することは、より良い医療と患者の計画を促進する可能性がある。
我々は、脳の3Dパッチと畳み込みニューラルネットワーク(CNN)を用いて、局所的な脳年齢推定器を開発する新しいディープラーニングアプローチを開発した。
論文 参考訳(メタデータ) (2020-08-29T11:50:37Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
被験者の大規模なコホートを含むグループ研究は、脳機能組織に関する一般的な結論を引き出す上で重要である。
グループ研究のための新しい多視点独立成分分析モデルを提案し、各被験者のデータを共有独立音源と雑音の線形結合としてモデル化する。
まず、fMRIデータを用いて、被験者間の共通音源の同定における感度の向上を示す。
論文 参考訳(メタデータ) (2020-06-11T17:29:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。