論文の概要: Predicting Parkinson's disease trajectory using clinical and functional MRI features: a reproduction and replication study
- arxiv url: http://arxiv.org/abs/2403.15405v3
- Date: Wed, 12 Feb 2025 10:33:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 13:45:07.241101
- Title: Predicting Parkinson's disease trajectory using clinical and functional MRI features: a reproduction and replication study
- Title(参考訳): 臨床および機能的MRI像を用いたパーキンソン病軌跡の予測 : 再生・複製研究
- Authors: Elodie Germani, Nikhil Baghwat, Mathieu Dugré, Rémi Gau, Albert Montillo, Kevin Nguyen, Andrzej Sokolowski, Madeleine Sharp, Jean-Baptiste Poline, Tristan Glatard,
- Abstract要約: パーキンソン病(英: Parkinson's disease,PD)は、神経変性疾患の1つで、病態がよく分かっておらず、早期の診断や疾患進行の予測に確立されたバイオマーカーがない。
いくつかの神経イメージングバイオマーカーが最近研究されているが、これらはコホート選択や画像解析など、いくつかの変数源に影響を受けやすい。
この研究は、PDの潜在的な神経イメージングバイオマーカーの複製可能性を研究する大規模なプロジェクトの一部である。
- 参考スコア(独自算出の注目度): 1.621204680136386
- License:
- Abstract: Parkinson's disease (PD) is a common neurodegenerative disorder with a poorly understood physiopathology and no established biomarkers for the diagnosis of early stages and for prediction of disease progression. Several neuroimaging biomarkers have been studied recently, but these are susceptible to several sources of variability related for instance to cohort selection or image analysis. In this context, an evaluation of the robustness of such biomarkers to variations in the data processing workflow is essential. This study is part of a larger project investigating the replicability of potential neuroimaging biomarkers of PD. Here, we attempt to reproduce (re-implementing the experiments with the same data, same method) and replicate (different data and/or method) the models described in [1] to predict individual's PD current state and progression using demographic, clinical and neuroimaging features (fALFF and ReHo extracted from resting-state fMRI). We use the Parkinson's Progression Markers Initiative dataset (PPMI, ppmi-info.org), as in [1] and aim to reproduce the original cohort, imaging features and machine learning models as closely as possible using the information available in the paper and the code. We also investigated methodological variations in cohort selection, feature extraction pipelines and sets of input features. Different criteria were used to evaluate the reproduction and compare the reproduced results with the original ones. Notably, we obtained significantly better than chance performance using the analysis pipeline closest to that in the original study (R2 \> 0), which is consistent with its findings. Moreover, using derived data provided by the authors of the original study, we were able to make an exact reproduction and managed to obtain results that were close to the original ones. The challenges encountered while reproducing and replicating the original work are likely explained by the complexity of neuroimaging studies, in particular in clinical settings. We provide recommendations to further facilitate the reproducibility of such studies in the future.
- Abstract(参考訳): パーキンソン病(英: Parkinson's disease,PD)は、神経変性疾患の1つで、病態がよく分かっておらず、早期の診断や疾患進行の予測に確立されたバイオマーカーがない。
いくつかの神経イメージングバイオマーカーが最近研究されているが、これらはコホート選択や画像解析など、いくつかの変数源に影響を受けやすい。
この文脈では、データ処理ワークフローの変動に対するバイオマーカーの堅牢性の評価が不可欠である。
この研究は、PDの潜在的な神経イメージングバイオマーカーの複製可能性を研究する大規模なプロジェクトの一部である。
そこで本研究では, 統計学的, 臨床的, 神経画像的特徴(fALFF, ReHo)を用いて, [1]で記述したモデルの再現(同一データ, 同一手法で実験を再実装)と再現(差分データおよび/または方法)を試みた。
我々は、Parkinson's Progression Markers Initiativeデータセット(PPMI, ppmi-info.org)を[1]で使用し、論文やコードで利用可能な情報を用いて、オリジナルのコホート、画像特徴、機械学習モデルを可能な限り密に再現することを目的としている。
また,コホート選択,特徴抽出パイプライン,入力特徴の集合の方法論的変動について検討した。
再現を評価するために異なる基準を用いて、再現された結果と元の結果と比較した。
特に,本研究に最も近い分析パイプライン (R2 \> 0) を用いて, 結果と一致した結果を得た。
さらに,本研究の著者が作成した導出データを用いて,正確な再現を行い,原研究に近い結果を得ることができた。
オリジナルの作品を再生・複製する際の課題は、特に臨床環境での神経画像研究の複雑さによって説明される可能性が高い。
今後,このような研究の再現性を高めるための推奨事項を提示する。
関連論文リスト
- Individualized multi-horizon MRI trajectory prediction for Alzheimer's Disease [0.0]
我々は、新しいアーキテクチャをトレーニングして潜伏空間の分布を構築し、そこからサンプルを抽出し、将来的な解剖学的変化の予測を生成する。
いくつかの代替手法と比較することにより,より高解像度でより個別化された画像を生成することを示す。
論文 参考訳(メタデータ) (2024-08-04T13:09:06Z) - A Demographic-Conditioned Variational Autoencoder for fMRI Distribution Sampling and Removal of Confounds [49.34500499203579]
変動型オートエンコーダ(VAE)ベースのモデルであるDemoVAEを作成し、人口統計学から fMRI の特徴を推定する。
ユーザが供給する人口動態に基づいて,高品質な合成fMRIデータを生成する。
論文 参考訳(メタデータ) (2024-05-13T17:49:20Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
同定された問題を解決するために,幾何制約付き確率的モデリング処理を提案する。
構成された埋め込み空間のレイアウトに適切な制約を課すために、重要な幾何学的性質のスイートを組み込む。
スペクトルグラフ理論法は、潜在的な新規クラスの数を推定するために考案された。
論文 参考訳(メタデータ) (2024-03-02T00:56:05Z) - Counterfactual Image Synthesis for Discovery of Personalized Predictive
Image Markers [0.293168019422713]
そこで本研究では,深部条件生成モデルを用いて,主観的疾患の進展に関連があるベースライン画像の局所像特徴を摂動させることが可能であることを示す。
本モデルでは, 臨床像を反映した画像特徴の変化により, 集団レベルでのMRI像の現況を予測し, 治療効果を検証した。
論文 参考訳(メタデータ) (2022-08-03T18:58:45Z) - Quantifying the Reproducibility of Graph Neural Networks using
Multigraph Brain Data [0.0]
グラフニューラルネットワーク(GNN)は、コンピュータビジョン、コンピュータ支援診断、および関連分野におけるいくつかの問題に取り組む際に、前例のない増殖を目撃している。
これまでの研究では、モデルの精度の向上に焦点が当てられていたが、GNNによって特定される最も差別的な特徴を定量化することは、臨床応用における信頼性に関する懸念を生じさせる無傷の問題である。
異なるモデル間で共有される最も差別的な特徴(バイオマーカー)によるGNNアセスメントのためのフレームワークを初めて提案する。我々のフレームワークの健全性を確認するため、トレーニング戦略やトレーニング戦略などのさまざまな要因を取り入れている。
論文 参考訳(メタデータ) (2021-09-06T05:31:02Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - ICAM-reg: Interpretable Classification and Regression with Feature
Attribution for Mapping Neurological Phenotypes in Individual Scans [3.589107822343127]
本研究では,生成的深層学習における最近の進歩を活かし,同時分類法,回帰法,特徴帰属法を開発した。
Alzheimer's Disease Neuroimaging InitiativeコホートにおけるMini-Mental State examination (MMSE)認知テストスコア予測のタスクについて検証した。
本稿では,生成したfaマップを用いて異常予測を説明し,回帰加群を組み込むことで潜在空間の不連続性を改善することを示す。
論文 参考訳(メタデータ) (2021-03-03T17:55:14Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
被験者の大規模なコホートを含むグループ研究は、脳機能組織に関する一般的な結論を引き出す上で重要である。
グループ研究のための新しい多視点独立成分分析モデルを提案し、各被験者のデータを共有独立音源と雑音の線形結合としてモデル化する。
まず、fMRIデータを用いて、被験者間の共通音源の同定における感度の向上を示す。
論文 参考訳(メタデータ) (2020-06-11T17:29:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。