Exploiting Multiple EEG Data Domains with Adversarial Learning
- URL: http://arxiv.org/abs/2204.07777v1
- Date: Sat, 16 Apr 2022 11:09:20 GMT
- Title: Exploiting Multiple EEG Data Domains with Adversarial Learning
- Authors: David Bethge, Philipp Hallgarten, Ozan \"Ozdenizci, Ralf Mikut,
Albrecht Schmidt, Tobias Grosse-Puppendahl
- Abstract summary: We propose an adversarial inference approach to learn data-source invariant representations in this context.
We unify EEG recordings from different source domains (i.e., emotion recognition SEED, SEED-IV, DEAP, DREAMER)
- Score: 20.878816519635304
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electroencephalography (EEG) is shown to be a valuable data source for
evaluating subjects' mental states. However, the interpretation of multi-modal
EEG signals is challenging, as they suffer from poor signal-to-noise-ratio, are
highly subject-dependent, and are bound to the equipment and experimental setup
used, (i.e. domain). This leads to machine learning models often suffer from
poor generalization ability, where they perform significantly worse on
real-world data than on the exploited training data. Recent research heavily
focuses on cross-subject and cross-session transfer learning frameworks to
reduce domain calibration efforts for EEG signals. We argue that multi-source
learning via learning domain-invariant representations from multiple
data-sources is a viable alternative, as the available data from different EEG
data-source domains (e.g., subjects, sessions, experimental setups) grow
massively. We propose an adversarial inference approach to learn data-source
invariant representations in this context, enabling multi-source learning for
EEG-based brain-computer interfaces. We unify EEG recordings from different
source domains (i.e., emotion recognition datasets SEED, SEED-IV, DEAP,
DREAMER), and demonstrate the feasibility of our invariant representation
learning approach in suppressing data-source-relevant information leakage by
35% while still achieving stable EEG-based emotion classification performance.
Related papers
- ART: Artifact Removal Transformer for Reconstructing Noise-Free Multichannel Electroencephalographic Signals [0.10499611180329801]
Artifact removal in electroencephalography (EEG) significantly impacts neuroscientific analysis and brain-computer interface (BCI) performance.
This study presents an innovative EEG denoising model employing transformer architecture to adeptly capture the transient millisecond-scale dynamics characteristic of EEG signals.
Our evaluations confirm that ART surpasses other deep-learning-based artifact removal methods, setting a new benchmark in EEG signal processing.
arXiv Detail & Related papers (2024-09-11T15:05:40Z) - Physics-informed and Unsupervised Riemannian Domain Adaptation for Machine Learning on Heterogeneous EEG Datasets [53.367212596352324]
We propose an unsupervised approach leveraging EEG signal physics.
We map EEG channels to fixed positions using field, source-free domain adaptation.
Our method demonstrates robust performance in brain-computer interface (BCI) tasks and potential biomarker applications.
arXiv Detail & Related papers (2024-03-07T16:17:33Z) - EEGFormer: Towards Transferable and Interpretable Large-Scale EEG
Foundation Model [39.363511340878624]
We present a novel EEG foundation model, namely EEGFormer, pretrained on large-scale compound EEG data.
To validate the effectiveness of our model, we extensively evaluate it on various downstream tasks and assess the performance under different transfer settings.
arXiv Detail & Related papers (2024-01-11T17:36:24Z) - Multi-Source Domain Adaptation with Transformer-based Feature Generation
for Subject-Independent EEG-based Emotion Recognition [0.5439020425819]
We propose a multi-source domain adaptation approach with a transformer-based feature generator (MSDA-TF) designed to leverage information from multiple sources.
During the adaptation process, we group the source subjects based on correlation values and aim to align the moments of the target subject with each source as well as within the sources.
MSDA-TF is validated on the SEED dataset and is shown to yield promising results.
arXiv Detail & Related papers (2024-01-04T16:38:47Z) - EEG Decoding for Datasets with Heterogenous Electrode Configurations
using Transfer Learning Graph Neural Networks [5.349852254138086]
It is difficult to combine data across labs or even data within the same lab collected over the years due to the variation in recording equipment and electrode layouts.
We developed a novel machine learning framework combining graph neural networks (GNNs) and transfer learning methodologies for non-invasive Motor Imagery (MI) EEG decoding.
arXiv Detail & Related papers (2023-06-20T16:29:00Z) - 2021 BEETL Competition: Advancing Transfer Learning for Subject
Independence & Heterogenous EEG Data Sets [89.84774119537087]
We design two transfer learning challenges around diagnostics and Brain-Computer-Interfacing (BCI)
Task 1 is centred on medical diagnostics, addressing automatic sleep stage annotation across subjects.
Task 2 is centred on Brain-Computer Interfacing (BCI), addressing motor imagery decoding across both subjects and data sets.
arXiv Detail & Related papers (2022-02-14T12:12:20Z) - Deep Transfer Learning for Multi-source Entity Linkage via Domain
Adaptation [63.24594955429465]
Multi-source entity linkage is critical in high-impact applications such as data cleaning and user stitching.
AdaMEL is a deep transfer learning framework that learns generic high-level knowledge to perform multi-source entity linkage.
Our framework achieves state-of-the-art results with 8.21% improvement on average over methods based on supervised learning.
arXiv Detail & Related papers (2021-10-27T15:20:41Z) - Unsupervised Domain Adaptive Learning via Synthetic Data for Person
Re-identification [101.1886788396803]
Person re-identification (re-ID) has gained more and more attention due to its widespread applications in video surveillance.
Unfortunately, the mainstream deep learning methods still need a large quantity of labeled data to train models.
In this paper, we develop a data collector to automatically generate synthetic re-ID samples in a computer game, and construct a data labeler to simultaneously annotate them.
arXiv Detail & Related papers (2021-09-12T15:51:41Z) - Subject Independent Emotion Recognition using EEG Signals Employing
Attention Driven Neural Networks [2.76240219662896]
A novel deep learning framework capable of doing subject-independent emotion recognition is presented.
A convolutional neural network (CNN) with attention framework is presented for performing the task.
The proposed approach has been validated using publicly available datasets.
arXiv Detail & Related papers (2021-06-07T09:41:15Z) - A Novel Transferability Attention Neural Network Model for EEG Emotion
Recognition [51.203579838210885]
We propose a transferable attention neural network (TANN) for EEG emotion recognition.
TANN learns the emotional discriminative information by highlighting the transferable EEG brain regions data and samples adaptively.
This can be implemented by measuring the outputs of multiple brain-region-level discriminators and one single sample-level discriminator.
arXiv Detail & Related papers (2020-09-21T02:42:30Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.