Attention is all you need for boosting graph convolutional neural network
- URL: http://arxiv.org/abs/2403.15419v1
- Date: Sun, 10 Mar 2024 11:28:33 GMT
- Title: Attention is all you need for boosting graph convolutional neural network
- Authors: Yinwei Wu,
- Abstract summary: Graph Convolutional Neural Networks (GCNs) possess strong capabilities for processing graph data in non-grid domains.
In this work, a plug-in module named Graph Knowledge Enhancement and Distillation Module (GKEDM) is proposed.
GKEDM can enhance node representations and improve the performance of GCNs by extracting and aggregating graph information.
It can efficiently transfer distilled knowledge from large teacher networks to small student networks via attention distillation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Convolutional Neural Networks (GCNs) possess strong capabilities for processing graph data in non-grid domains. They can capture the topological logical structure and node features in graphs and integrate them into nodes' final representations. GCNs have been extensively studied in various fields, such as recommendation systems, social networks, and protein molecular structures. With the increasing application of graph neural networks, research has focused on improving their performance while compressing their size. In this work, a plug-in module named Graph Knowledge Enhancement and Distillation Module (GKEDM) is proposed. GKEDM can enhance node representations and improve the performance of GCNs by extracting and aggregating graph information via multi-head attention mechanism. Furthermore, GKEDM can serve as an auxiliary transferor for knowledge distillation. With a specially designed attention distillation method, GKEDM can distill the knowledge of large teacher models into high-performance and compact student models. Experiments on multiple datasets demonstrate that GKEDM can significantly improve the performance of various GCNs with minimal overhead. Furthermore, it can efficiently transfer distilled knowledge from large teacher networks to small student networks via attention distillation.
Related papers
- Self-Attention Empowered Graph Convolutional Network for Structure
Learning and Node Embedding [5.164875580197953]
In representation learning on graph-structured data, many popular graph neural networks (GNNs) fail to capture long-range dependencies.
This paper proposes a novel graph learning framework called the graph convolutional network with self-attention (GCN-SA)
The proposed scheme exhibits an exceptional generalization capability in node-level representation learning.
arXiv Detail & Related papers (2024-03-06T05:00:31Z) - Compressing Deep Graph Neural Networks via Adversarial Knowledge
Distillation [41.00398052556643]
We propose a novel Adversarial Knowledge Distillation framework for graph models named GraphAKD.
The discriminator distinguishes between teacher knowledge and what the student inherits, while the student GNN works as a generator and aims to fool the discriminator.
The results imply that GraphAKD can precisely transfer knowledge from a complicated teacher GNN to a compact student GNN.
arXiv Detail & Related papers (2022-05-24T00:04:43Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
We propose a graph convolutional relationship between the observed and latent graphs, and formulate the graph learning task as a network inverse (deconvolution) problem.
In lieu of eigendecomposition-based spectral methods, we unroll and truncate proximal gradient iterations to arrive at a parameterized neural network architecture that we call a Graph Deconvolution Network (GDN)
GDNs can learn a distribution of graphs in a supervised fashion, perform link prediction or edge-weight regression tasks by adapting the loss function, and they are inherently inductive.
arXiv Detail & Related papers (2022-05-19T14:08:15Z) - Spiking Graph Convolutional Networks [19.36064180392385]
SpikingGCN is an end-to-end framework that aims to integrate the embedding of GCNs with the biofidelity characteristics of SNNs.
We show that SpikingGCN on a neuromorphic chip can bring a clear advantage of energy efficiency into graph data analysis.
arXiv Detail & Related papers (2022-05-05T16:44:36Z) - Hierarchical Graph Capsule Network [78.4325268572233]
We propose hierarchical graph capsule network (HGCN) that can jointly learn node embeddings and extract graph hierarchies.
To learn the hierarchical representation, HGCN characterizes the part-whole relationship between lower-level capsules (part) and higher-level capsules (whole)
arXiv Detail & Related papers (2020-12-16T04:13:26Z) - AM-GCN: Adaptive Multi-channel Graph Convolutional Networks [85.0332394224503]
We study whether Graph Convolutional Networks (GCNs) can optimally integrate node features and topological structures in a complex graph with rich information.
We propose an adaptive multi-channel graph convolutional networks for semi-supervised classification (AM-GCN)
Our experiments show that AM-GCN extracts the most correlated information from both node features and topological structures substantially.
arXiv Detail & Related papers (2020-07-05T08:16:03Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z) - DeeperGCN: All You Need to Train Deeper GCNs [66.64739331859226]
Graph Convolutional Networks (GCNs) have been drawing significant attention with the power of representation learning on graphs.
Unlike Convolutional Neural Networks (CNNs), which are able to take advantage of stacking very deep layers, GCNs suffer from vanishing gradient, over-smoothing and over-fitting issues when going deeper.
This paper proposes DeeperGCN that is capable of successfully and reliably training very deep GCNs.
arXiv Detail & Related papers (2020-06-13T23:00:22Z) - Data Augmentation for Graph Neural Networks [32.24311481878144]
We study graph data augmentation for graph neural networks (GNNs) in the context of improving semi-supervised node-classification.
Our work shows that neural edge predictors can effectively encode class-homophilic structure to promote intra-class edges and demote inter-class edges in given graph structure.
Our main contribution introduces the GAug graph data augmentation framework, which leverages these insights to improve performance in GNN-based node classification via edge prediction.
arXiv Detail & Related papers (2020-06-11T21:17:56Z) - Distilling Knowledge from Graph Convolutional Networks [146.71503336770886]
Existing knowledge distillation methods focus on convolutional neural networks (CNNs)
We propose the first dedicated approach to distilling knowledge from a pre-trained graph convolutional network (GCN) model.
We show that our method achieves the state-of-the-art knowledge distillation performance for GCN models.
arXiv Detail & Related papers (2020-03-23T18:23:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.