PPA-Game: Characterizing and Learning Competitive Dynamics Among Online Content Creators
- URL: http://arxiv.org/abs/2403.15524v1
- Date: Fri, 22 Mar 2024 14:13:11 GMT
- Title: PPA-Game: Characterizing and Learning Competitive Dynamics Among Online Content Creators
- Authors: Renzhe Xu, Haotian Wang, Xingxuan Zhang, Bo Li, Peng Cui,
- Abstract summary: We introduce the Proportional Payoff Allocation Game (PPA-Game) to model how agents compete for divisible resources and consumers' attention.
Our analysis reveals that although a pure Nash equilibrium (PNE) is not guaranteed in every scenario, it is commonly observed.
We propose an online algorithm facilitating each agent's cumulative payoffs over $T$ rounds.
- Score: 32.27173842175003
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce the Proportional Payoff Allocation Game (PPA-Game) to model how agents, akin to content creators on platforms like YouTube and TikTok, compete for divisible resources and consumers' attention. Payoffs are allocated to agents based on heterogeneous weights, reflecting the diversity in content quality among creators. Our analysis reveals that although a pure Nash equilibrium (PNE) is not guaranteed in every scenario, it is commonly observed, with its absence being rare in our simulations. Beyond analyzing static payoffs, we further discuss the agents' online learning about resource payoffs by integrating a multi-player multi-armed bandit framework. We propose an online algorithm facilitating each agent's maximization of cumulative payoffs over $T$ rounds. Theoretically, we establish that the regret of any agent is bounded by $O(\log^{1 + \eta} T)$ for any $\eta > 0$. Empirical results further validate the effectiveness of our approach.
Related papers
- Optimistic Policy Gradient in Multi-Player Markov Games with a Single
Controller: Convergence Beyond the Minty Property [89.96815099996132]
We develop a new framework to characterize optimistic policy gradient methods in multi-player games with a single controller.
Our approach relies on a natural generalization of the classical Minty property that we introduce, which we anticipate to have further applications beyond Markov games.
arXiv Detail & Related papers (2023-12-19T11:34:10Z) - A Black-box Approach for Non-stationary Multi-agent Reinforcement Learning [53.83345471268163]
We investigate learning the equilibria in non-stationary multi-agent systems.
We show how to test for various types of equilibria by a black-box reduction to single-agent learning.
arXiv Detail & Related papers (2023-06-12T23:48:24Z) - Provably Efficient Generalized Lagrangian Policy Optimization for Safe
Multi-Agent Reinforcement Learning [105.7510838453122]
We examine online safe multi-agent reinforcement learning using constrained Markov games.
We develop an upper confidence reinforcement learning algorithm to solve this Lagrangian problem.
Our algorithm updates the minimax decision primal variables via online mirror descent and the dual variable via projected gradient step.
arXiv Detail & Related papers (2023-05-31T22:09:24Z) - Minimax-Optimal Multi-Agent RL in Zero-Sum Markov Games With a
Generative Model [50.38446482252857]
Two-player zero-sum Markov games are arguably the most basic setting in multi-agent reinforcement learning.
We develop a learning algorithm that learns an $varepsilon$-approximate Markov NE policy using $$ widetildeObigg.
We derive a refined regret bound for FTRL that makes explicit the role of variance-type quantities.
arXiv Detail & Related papers (2022-08-22T17:24:55Z) - Provably Efficient Fictitious Play Policy Optimization for Zero-Sum
Markov Games with Structured Transitions [145.54544979467872]
We propose and analyze new fictitious play policy optimization algorithms for zero-sum Markov games with structured but unknown transitions.
We prove tight $widetildemathcalO(sqrtK)$ regret bounds after $K$ episodes in a two-agent competitive game scenario.
Our algorithms feature a combination of Upper Confidence Bound (UCB)-type optimism and fictitious play under the scope of simultaneous policy optimization.
arXiv Detail & Related papers (2022-07-25T18:29:16Z) - Modelling Cournot Games as Multi-agent Multi-armed Bandits [4.751331778201811]
We investigate the use of a multi-agent multi-armed bandit (MA-MAB) setting for modeling repeated Cournot oligopoly games.
We find that an $epsilon$-greedy approach offers a more viable learning mechanism than other traditional MAB approaches.
We propose two novel approaches that take advantage of the ordered action space: $epsilon$-greedy+HL and $epsilon$-greedy+EL.
arXiv Detail & Related papers (2022-01-01T22:02:47Z) - Can Reinforcement Learning Find Stackelberg-Nash Equilibria in
General-Sum Markov Games with Myopic Followers? [156.5760265539888]
We study multi-player general-sum Markov games with one of the players designated as the leader and the other players regarded as followers.
For such a game, our goal is to find a Stackelberg-Nash equilibrium (SNE), which is a policy pair $(pi*, nu*)$.
We develop sample-efficient reinforcement learning (RL) algorithms for solving for an SNE in both online and offline settings.
arXiv Detail & Related papers (2021-12-27T05:41:14Z) - Towards convergence to Nash equilibria in two-team zero-sum games [17.4461045395989]
Two-team zero-sum games are defined as multi-player games where players are split into two competing sets of agents.
We focus on the solution concept of Nash equilibria (NE)
We show that computing NE for this class of games is $textithard$ for the complexity class $mathrm$.
arXiv Detail & Related papers (2021-11-07T21:15:35Z) - Provably Efficient Reinforcement Learning in Decentralized General-Sum
Markov Games [5.205867750232226]
This paper addresses the problem of learning an equilibrium efficiently in general-sum Markov games.
We propose an algorithm in which each agent independently runs optimistic V-learning to efficiently explore the unknown environment.
We show that the agents can find an $epsilon$-approximate CCE in at most $widetildeO( H6S A /epsilon2)$ episodes.
arXiv Detail & Related papers (2021-10-12T02:01:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.