Competitive Multi-armed Bandit Games for Resource Sharing
- URL: http://arxiv.org/abs/2503.20975v1
- Date: Wed, 26 Mar 2025 20:35:18 GMT
- Title: Competitive Multi-armed Bandit Games for Resource Sharing
- Authors: Hongbo Li, Lingjie Duan,
- Abstract summary: In modern resource-sharing systems, multiple agents access limited resources with unknown conditions to perform tasks.<n>In this paper, we study a new N-player K-arm competitive MAB game, where non-myopic players (agents) compete with each other to form diverse private estimations of unknown arms.
- Score: 17.986928810925686
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In modern resource-sharing systems, multiple agents access limited resources with unknown stochastic conditions to perform tasks. When multiple agents access the same resource (arm) simultaneously, they compete for successful usage, leading to contention and reduced rewards. This motivates our study of competitive multi-armed bandit (CMAB) games. In this paper, we study a new N-player K-arm competitive MAB game, where non-myopic players (agents) compete with each other to form diverse private estimations of unknown arms over time. Their possible collisions on same arms and time-varying nature of arm rewards make the policy analysis more involved than existing studies for myopic players. We explicitly analyze the threshold-based structures of social optimum and existing selfish policy, showing that the latter causes prolonged convergence time $\Omega(\frac{K}{\eta^2}\ln({\frac{KN}{\delta}}))$, while socially optimal policy with coordinated communication reduces it to $\mathcal{O}(\frac{K}{N\eta^2}\ln{(\frac{K}{\delta})})$. Based on the comparison, we prove that the competition among selfish players for the best arm can result in an infinite price of anarchy (PoA), indicating an arbitrarily large efficiency loss compared to social optimum. We further prove that no informational (non-monetary) mechanism (including Bayesian persuasion) can reduce the infinite PoA, as the strategic misreporting by non-myopic players undermines such approaches. To address this, we propose a Combined Informational and Side-Payment (CISP) mechanism, which provides socially optimal arm recommendations with proper informational and monetary incentives to players according to their time-varying private beliefs. Our CISP mechanism keeps ex-post budget balanced for social planner and ensures truthful reporting from players, achieving the minimum PoA=1 and same convergence time as social optimum.
Related papers
- Strategic Multi-Armed Bandit Problems Under Debt-Free Reporting [21.14355421498382]
We consider the classical multi-armed bandit problem, but with strategic arms.<n>We introduce a new mechanism that establishes an equilibrium wherein each arm behaves truthfully and discloses as much of its rewards as possible.<n>With this mechanism, the agent can attain the second-highest average (true) reward among arms, with a cumulative regret bounded by $O(log(T)/Delta)$ (problem-dependent) or $O(sqrtTlog(T))$ (worst-case)
arXiv Detail & Related papers (2025-01-27T13:01:34Z) - Multi-agent Multi-armed Bandits with Stochastic Sharable Arm Capacities [69.34646544774161]
We formulate a new variant of multi-player multi-armed bandit (MAB) model, which captures arrival of requests to each arm and the policy of allocating requests to players.
The challenge is how to design a distributed learning algorithm such that players select arms according to the optimal arm pulling profile.
We design an iterative distributed algorithm, which guarantees that players can arrive at a consensus on the optimal arm pulling profile in only M rounds.
arXiv Detail & Related papers (2024-08-20T13:57:00Z) - Optimistic Policy Gradient in Multi-Player Markov Games with a Single
Controller: Convergence Beyond the Minty Property [89.96815099996132]
We develop a new framework to characterize optimistic policy gradient methods in multi-player games with a single controller.
Our approach relies on a natural generalization of the classical Minty property that we introduce, which we anticipate to have further applications beyond Markov games.
arXiv Detail & Related papers (2023-12-19T11:34:10Z) - Bandits Meet Mechanism Design to Combat Clickbait in Online
Recommendation [50.469872635246176]
We study a strategic variant of the multi-armed bandit problem, which we coin the strategic click-bandit.
This model is motivated by applications in online recommendation where the choice of recommended items depends on both the click-through rates and the post-click rewards.
arXiv Detail & Related papers (2023-11-27T09:19:01Z) - Budgeted Multi-Armed Bandits with Asymmetric Confidence Intervals [0.9831489366502302]
We study the Budgeted Multi-Armed Bandit (MAB) problem, where a player chooses from $K$ arms with unknown expected rewards and costs.
We propose a new upper confidence bound (UCB) sampling policy, $omega$-UCB, that uses asymmetric confidence intervals.
These intervals scale with the distance between the sample mean and the bounds of a random variable, yielding a more accurate and tight estimation of the reward-cost ratio.
arXiv Detail & Related papers (2023-06-12T12:35:16Z) - Competing for Shareable Arms in Multi-Player Multi-Armed Bandits [29.08799537067425]
We study a novel multi-player multi-armed bandit (MPMAB) setting where players are selfish and aim to maximize their own rewards.
We propose a novel Selfish MPMAB with Averaging Allocation (SMAA) approach based on the equilibrium.
We establish that no single selfish player can significantly increase their rewards through deviation, nor can they detrimentally affect other players' rewards without incurring substantial losses for themselves.
arXiv Detail & Related papers (2023-05-30T15:59:56Z) - How Bad is Selfish Driving? Bounding the Inefficiency of Equilibria in
Urban Driving Games [64.71476526716668]
We study the (in)efficiency of any equilibrium players might agree to play.
We obtain guarantees that refine existing bounds on the Price of Anarchy.
Although the obtained guarantees concern open-loop trajectories, we observe efficient equilibria even when agents employ closed-loop policies.
arXiv Detail & Related papers (2022-10-24T09:32:40Z) - Provably Efficient Fictitious Play Policy Optimization for Zero-Sum
Markov Games with Structured Transitions [145.54544979467872]
We propose and analyze new fictitious play policy optimization algorithms for zero-sum Markov games with structured but unknown transitions.
We prove tight $widetildemathcalO(sqrtK)$ regret bounds after $K$ episodes in a two-agent competitive game scenario.
Our algorithms feature a combination of Upper Confidence Bound (UCB)-type optimism and fictitious play under the scope of simultaneous policy optimization.
arXiv Detail & Related papers (2022-07-25T18:29:16Z) - Multi-Player Multi-Armed Bandits with Finite Shareable Resources Arms:
Learning Algorithms & Applications [32.313813562222066]
We study how decentralized players cooperatively play the same multi-armed bandit so as to maximize their total cumulative rewards.
Existing MMAB models mostly assume when more than one player pulls the same arm, they either have a collision and obtain zero rewards, or have no collision and gain independent rewards.
We propose an MMAB with shareable resources as an extension to the collision and non-collision settings.
arXiv Detail & Related papers (2022-04-28T13:46:59Z) - Bandit Learning in Decentralized Matching Markets [82.39061186055775]
We study two-sided matching markets in which one side of the market (the players) does not have a priori knowledge about its preferences for the other side (the arms) and is required to learn its preferences from experience.
This model extends the standard multi-armed bandit framework to a decentralized multiple player setting with competition.
We show that the algorithm is incentive compatible whenever the arms' preferences are shared, but not necessarily so when preferences are fully general.
arXiv Detail & Related papers (2020-12-14T08:58:07Z) - Selfish Robustness and Equilibria in Multi-Player Bandits [25.67398941667429]
In a game, several players simultaneously pull arms and encounter a collision - with 0 reward - if some of them pull the same arm at the same time.
While the cooperative case where players maximize the collective reward has been mostly considered, to malicious players is a crucial and challenging concern.
We shall consider instead the more natural class of selfish players whose incentives are to maximize their individual rewards, potentially at the expense of the social welfare.
arXiv Detail & Related papers (2020-02-04T09:50:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.