Conformal online model aggregation
- URL: http://arxiv.org/abs/2403.15527v2
- Date: Thu, 2 May 2024 16:38:17 GMT
- Title: Conformal online model aggregation
- Authors: Matteo Gasparin, Aaditya Ramdas,
- Abstract summary: This paper proposes a new approach towards conformal model aggregation in online settings.
It is based on combining the prediction sets from several algorithms by voting, where weights on the models are adapted over time based on past performance.
- Score: 29.43493007296859
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conformal prediction equips machine learning models with a reasonable notion of uncertainty quantification without making strong distributional assumptions. It wraps around any black-box prediction model and converts point predictions into set predictions that have a predefined marginal coverage guarantee. However, conformal prediction only works if we fix the underlying machine learning model in advance. A relatively unaddressed issue in conformal prediction is that of model selection and/or aggregation: for a given problem, which of the plethora of prediction methods (random forests, neural nets, regularized linear models, etc.) should we conformalize? This paper proposes a new approach towards conformal model aggregation in online settings that is based on combining the prediction sets from several algorithms by voting, where weights on the models are adapted over time based on past performance.
Related papers
- Multi-model Ensemble Conformal Prediction in Dynamic Environments [14.188004615463742]
We introduce a novel adaptive conformal prediction framework, where the model used for creating prediction sets is selected on the fly from multiple candidate models.
The proposed algorithm is proven to achieve strongly adaptive regret over all intervals while maintaining valid coverage.
arXiv Detail & Related papers (2024-11-06T05:57:28Z) - Awareness of uncertainty in classification using a multivariate model and multi-views [1.3048920509133808]
The proposed model regularizes uncertain predictions, and trains to calculate both the predictions and their uncertainty estimations.
Given the multi-view predictions together with their uncertainties and confidences, we proposed several methods to calculate final predictions.
The proposed methodology was tested using CIFAR-10 dataset with clean and noisy labels.
arXiv Detail & Related papers (2024-04-16T06:40:51Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
We study the effect of conflicting predictions over the set of near-optimal machine learning models.
We present theoretical results on the expected churn between models within the Rashomon set.
We show how our approach can be used to better anticipate, reduce, and avoid churn in consumer-facing applications.
arXiv Detail & Related papers (2024-02-12T16:15:25Z) - Self-Calibrating Conformal Prediction [16.606421967131524]
We introduce Self-Calibrating Conformal Prediction to deliver calibrated point predictions alongside prediction intervals with finite-sample validity conditional on these predictions.
We show that our method improves calibrated interval efficiency through model calibration and offers a practical alternative to feature-conditional validity.
arXiv Detail & Related papers (2024-02-11T21:12:21Z) - Post-Selection Confidence Bounds for Prediction Performance [2.28438857884398]
In machine learning, the selection of a promising model from a potentially large number of competing models and the assessment of its generalization performance are critical tasks.
We propose an algorithm how to compute valid lower confidence bounds for multiple models that have been selected based on their prediction performances in the evaluation set.
arXiv Detail & Related papers (2022-10-24T13:28:43Z) - Predictive Inference with Feature Conformal Prediction [80.77443423828315]
We propose feature conformal prediction, which extends the scope of conformal prediction to semantic feature spaces.
From a theoretical perspective, we demonstrate that feature conformal prediction provably outperforms regular conformal prediction under mild assumptions.
Our approach could be combined with not only vanilla conformal prediction, but also other adaptive conformal prediction methods.
arXiv Detail & Related papers (2022-10-01T02:57:37Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - CovarianceNet: Conditional Generative Model for Correct Covariance
Prediction in Human Motion Prediction [71.31516599226606]
We present a new method to correctly predict the uncertainty associated with the predicted distribution of future trajectories.
Our approach, CovariaceNet, is based on a Conditional Generative Model with Gaussian latent variables.
arXiv Detail & Related papers (2021-09-07T09:38:24Z) - Private Prediction Sets [72.75711776601973]
Machine learning systems need reliable uncertainty quantification and protection of individuals' privacy.
We present a framework that treats these two desiderata jointly.
We evaluate the method on large-scale computer vision datasets.
arXiv Detail & Related papers (2021-02-11T18:59:11Z) - Short-term prediction of Time Series based on bounding techniques [0.0]
This paper is reconsidered the prediction problem in time series framework by using a new non-parametric approach.
The innovation is to consider both deterministic and deterministic-stochastic assumptions in order to obtain the upper bound of the prediction error.
A benchmark is included to illustrate that the proposed predictor can obtain suitable results in a prediction scheme, and can be an interesting alternative method to the classical non-parametric methods.
arXiv Detail & Related papers (2021-01-26T11:27:36Z) - AutoCP: Automated Pipelines for Accurate Prediction Intervals [84.16181066107984]
This paper proposes an AutoML framework called Automatic Machine Learning for Conformal Prediction (AutoCP)
Unlike the familiar AutoML frameworks that attempt to select the best prediction model, AutoCP constructs prediction intervals that achieve the user-specified target coverage rate.
We tested AutoCP on a variety of datasets and found that it significantly outperforms benchmark algorithms.
arXiv Detail & Related papers (2020-06-24T23:13:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.