Data-centric Prediction Explanation via Kernelized Stein Discrepancy
- URL: http://arxiv.org/abs/2403.15576v2
- Date: Fri, 04 Oct 2024 01:22:06 GMT
- Title: Data-centric Prediction Explanation via Kernelized Stein Discrepancy
- Authors: Mahtab Sarvmaili, Hassan Sajjad, Ga Wu,
- Abstract summary: This paper presents a Highly-precise and Data-centric Explanation (HD-Explain) prediction explanation method that exploits properties of Kernelized Stein Discrepancy (KSD)
Specifically, the KSD uniquely defines a parameterized kernel function for a trained model that encodes model-dependent data correlation.
We show that HD-Explain outperforms existing methods from various aspects, including preciseness (fine-grained explanation), consistency, and 3) computation efficiency.
- Score: 14.177012256360635
- License:
- Abstract: Existing example-based prediction explanation methods often bridge test and training data points through the model's parameters or latent representations. While these methods offer clues to the causes of model predictions, they often exhibit innate shortcomings, such as incurring significant computational overhead or producing coarse-grained explanations. This paper presents a Highly-precise and Data-centric Explan}ation (HD-Explain) prediction explanation method that exploits properties of Kernelized Stein Discrepancy (KSD). Specifically, the KSD uniquely defines a parameterized kernel function for a trained model that encodes model-dependent data correlation. By leveraging the kernel function, one can identify training samples that provide the best predictive support to a test point efficiently. We conducted thorough analyses and experiments across multiple classification domains, where we show that HD-Explain outperforms existing methods from various aspects, including 1) preciseness (fine-grained explanation), 2) consistency, and 3) computation efficiency, leading to a surprisingly simple, effective, and robust prediction explanation solution.
Related papers
- DISCO: DISCovering Overfittings as Causal Rules for Text Classification Models [6.369258625916601]
Post-hoc interpretability methods fail to capture the models' decision-making process fully.
Our paper introduces DISCO, a novel method for discovering global, rule-based explanations.
DISCO supports interactive explanations, enabling human inspectors to distinguish spurious causes in the rule-based output.
arXiv Detail & Related papers (2024-11-07T12:12:44Z) - Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
Diffusion models have led to significant advancements in generative modelling.
Yet their widespread adoption poses challenges regarding data attribution and interpretability.
In this paper, we aim to help address such challenges by developing an textitinfluence functions framework.
arXiv Detail & Related papers (2024-10-17T17:59:02Z) - Sub-graph Based Diffusion Model for Link Prediction [43.15741675617231]
Denoising Diffusion Probabilistic Models (DDPMs) represent a contemporary class of generative models with exceptional qualities.
We build a novel generative model for link prediction using a dedicated design to decompose the likelihood estimation process via the Bayesian formula.
Our proposed method presents numerous advantages: (1) transferability across datasets without retraining, (2) promising generalization on limited training data, and (3) robustness against graph adversarial attacks.
arXiv Detail & Related papers (2024-09-13T02:23:55Z) - Explaining Predictive Uncertainty with Information Theoretic Shapley
Values [6.49838460559032]
We adapt the popular Shapley value framework to explain various types of predictive uncertainty.
We implement efficient algorithms that perform well in a range of experiments on real and simulated data.
arXiv Detail & Related papers (2023-06-09T07:43:46Z) - Rationalizing Predictions by Adversarial Information Calibration [65.19407304154177]
We train two models jointly: one is a typical neural model that solves the task at hand in an accurate but black-box manner, and the other is a selector-predictor model that additionally produces a rationale for its prediction.
We use an adversarial technique to calibrate the information extracted by the two models such that the difference between them is an indicator of the missed or over-selected features.
arXiv Detail & Related papers (2023-01-15T03:13:09Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
This work offers an efficient solution to temporal point processes inference using general parametric kernels with finite support.
The method's effectiveness is evaluated by modeling the occurrence of stimuli-induced patterns from brain signals recorded with magnetoencephalography (MEG)
Results show that the proposed approach leads to an improved estimation of pattern latency than the state-of-the-art.
arXiv Detail & Related papers (2022-10-10T12:35:02Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Building Reliable Explanations of Unreliable Neural Networks: Locally
Smoothing Perspective of Model Interpretation [0.0]
We present a novel method for reliably explaining the predictions of neural networks.
Our method is built on top of the assumption of smooth landscape in a loss function of the model prediction.
arXiv Detail & Related papers (2021-03-26T08:52:11Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
In computer vision applications, generative counterfactual methods indicate how to perturb a model's input to change its prediction.
We propose a counterfactual method that learns a perturbation in a disentangled latent space that is constrained using a diversity-enforcing loss.
Our model improves the success rate of producing high-quality valuable explanations when compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2021-03-18T12:57:34Z) - Learning from the Best: Rationalizing Prediction by Adversarial
Information Calibration [39.685626118667074]
We train two models jointly: one is a typical neural model that solves the task at hand in an accurate but black-box manner, and the other is a selector-predictor model that additionally produces a rationale for its prediction.
We use an adversarial-based technique to calibrate the information extracted by the two models.
For natural language tasks, we propose to use a language-model-based regularizer to encourage the extraction of fluent rationales.
arXiv Detail & Related papers (2020-12-16T11:54:15Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
We propose a novel scalable method to learn double-robust representations for counterfactual predictions.
We make robust and efficient counterfactual predictions for both individual and average treatment effects.
The algorithm shows competitive performance with the state-of-the-art on real world and synthetic data.
arXiv Detail & Related papers (2020-10-15T16:39:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.