Efficiently Assemble Normalization Layers and Regularization for Federated Domain Generalization
- URL: http://arxiv.org/abs/2403.15605v1
- Date: Fri, 22 Mar 2024 20:22:08 GMT
- Title: Efficiently Assemble Normalization Layers and Regularization for Federated Domain Generalization
- Authors: Khiem Le, Long Ho, Cuong Do, Danh Le-Phuoc, Kok-Seng Wong,
- Abstract summary: Domain shift is a formidable issue in Machine Learning that causes a model to suffer from performance degradation when tested on unseen domains.
FedDG attempts to train a global model using collaborative clients in a privacy-preserving manner that can generalize well to unseen clients possibly with domain shift.
Here, we introduce a novel architectural method for FedDG, namely gPerXAN, which relies on a normalization scheme working with a guiding regularizer.
- Score: 1.1534313664323637
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Domain shift is a formidable issue in Machine Learning that causes a model to suffer from performance degradation when tested on unseen domains. Federated Domain Generalization (FedDG) attempts to train a global model using collaborative clients in a privacy-preserving manner that can generalize well to unseen clients possibly with domain shift. However, most existing FedDG methods either cause additional privacy risks of data leakage or induce significant costs in client communication and computation, which are major concerns in the Federated Learning paradigm. To circumvent these challenges, here we introduce a novel architectural method for FedDG, namely gPerXAN, which relies on a normalization scheme working with a guiding regularizer. In particular, we carefully design Personalized eXplicitly Assembled Normalization to enforce client models selectively filtering domain-specific features that are biased towards local data while retaining discrimination of those features. Then, we incorporate a simple yet effective regularizer to guide these models in directly capturing domain-invariant representations that the global model's classifier can leverage. Extensive experimental results on two benchmark datasets, i.e., PACS and Office-Home, and a real-world medical dataset, Camelyon17, indicate that our proposed method outperforms other existing methods in addressing this particular problem.
Related papers
- Object Style Diffusion for Generalized Object Detection in Urban Scene [69.04189353993907]
We introduce a novel single-domain object detection generalization method, named GoDiff.
By integrating pseudo-target domain data with source domain data, we diversify the training dataset.
Experimental results demonstrate that our method not only enhances the generalization ability of existing detectors but also functions as a plug-and-play enhancement for other single-domain generalization methods.
arXiv Detail & Related papers (2024-12-18T13:03:00Z) - FedDUAL: A Dual-Strategy with Adaptive Loss and Dynamic Aggregation for Mitigating Data Heterogeneity in Federated Learning [12.307490659840845]
Federated Learning (FL) combines locally optimized models from various clients into a unified global model.
FL encounters significant challenges such as performance degradation, slower convergence, and reduced robustness of the global model.
We introduce an innovative dual-strategy approach designed to effectively resolve these issues.
arXiv Detail & Related papers (2024-12-05T18:42:29Z) - FedCCRL: Federated Domain Generalization with Cross-Client Representation Learning [4.703379311088474]
Domain Generalization (DG) aims to train models that can effectively generalize to unseen domains.
In Federated Learning (FL), where clients collaboratively train a model without directly sharing their data, most existing DG algorithms are not directly applicable to the FL setting.
We propose FedCCRL, a lightweight federated domain generalization method that significantly improves the model's generalization ability while preserving privacy.
arXiv Detail & Related papers (2024-10-15T04:44:21Z) - Feature Diversification and Adaptation for Federated Domain Generalization [27.646565383214227]
In real-world applications, local clients often operate within their limited domains, leading to a domain shift' across clients.
We introduce the concept of federated feature diversification, which helps local models learn client-invariant representations while preserving privacy.
Our resultant global model shows robust performance on unseen test domain data.
arXiv Detail & Related papers (2024-07-11T07:45:10Z) - DIGIC: Domain Generalizable Imitation Learning by Causal Discovery [69.13526582209165]
Causality has been combined with machine learning to produce robust representations for domain generalization.
We make a different attempt by leveraging the demonstration data distribution to discover causal features for a domain generalizable policy.
We design a novel framework, called DIGIC, to identify the causal features by finding the direct cause of the expert action from the demonstration data distribution.
arXiv Detail & Related papers (2024-02-29T07:09:01Z) - Hypernetwork-Driven Model Fusion for Federated Domain Generalization [26.492360039272942]
Federated Learning (FL) faces significant challenges with domain shifts in heterogeneous data.
We propose a robust framework, coined as hypernetwork-based Federated Fusion (hFedF), using hypernetworks for non-linear aggregation.
Our method employs client-specific embeddings and gradient alignment techniques to manage domain generalization effectively.
arXiv Detail & Related papers (2024-02-10T15:42:03Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - One-Shot Domain Adaptive and Generalizable Semantic Segmentation with
Class-Aware Cross-Domain Transformers [96.51828911883456]
Unsupervised sim-to-real domain adaptation (UDA) for semantic segmentation aims to improve the real-world test performance of a model trained on simulated data.
Traditional UDA often assumes that there are abundant unlabeled real-world data samples available during training for the adaptation.
We explore the one-shot unsupervised sim-to-real domain adaptation (OSUDA) and generalization problem, where only one real-world data sample is available.
arXiv Detail & Related papers (2022-12-14T15:54:15Z) - Normalization Perturbation: A Simple Domain Generalization Method for
Real-World Domain Shifts [133.99270341855728]
Real-world domain styles can vary substantially due to environment changes and sensor noises.
Deep models only know the training domain style.
We propose Normalization Perturbation to overcome this domain style overfitting problem.
arXiv Detail & Related papers (2022-11-08T17:36:49Z) - Federated and Generalized Person Re-identification through Domain and
Feature Hallucinating [88.77196261300699]
We study the problem of federated domain generalization (FedDG) for person re-identification (re-ID)
We propose a novel method, called "Domain and Feature Hallucinating (DFH)", to produce diverse features for learning generalized local and global models.
Our method achieves the state-of-the-art performance for FedDG on four large-scale re-ID benchmarks.
arXiv Detail & Related papers (2022-03-05T09:15:13Z) - Towards Data-Free Domain Generalization [12.269045654957765]
How can knowledge contained in models trained on different source data domains be merged into a single model that generalizes well to unseen target domains?
Prior domain generalization methods typically rely on using source domain data, making them unsuitable for private decentralized data.
We propose DEKAN, an approach that extracts and fuses domain-specific knowledge from the available teacher models into a student model robust to domain shift.
arXiv Detail & Related papers (2021-10-09T11:44:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.