GaNI: Global and Near Field Illumination Aware Neural Inverse Rendering
- URL: http://arxiv.org/abs/2403.15651v2
- Date: Thu, 03 Oct 2024 22:11:19 GMT
- Title: GaNI: Global and Near Field Illumination Aware Neural Inverse Rendering
- Authors: Jiaye Wu, Saeed Hadadan, Geng Lin, Matthias Zwicker, David Jacobs, Roni Sengupta,
- Abstract summary: GaNI can reconstruct geometry, albedo, and roughness parameters from images of a scene captured with co-located light and camera.
Existing inverse rendering techniques with co-located light-camera focus on single objects only.
- Score: 21.584362527926654
- License:
- Abstract: In this paper, we present GaNI, a Global and Near-field Illumination-aware neural inverse rendering technique that can reconstruct geometry, albedo, and roughness parameters from images of a scene captured with co-located light and camera. Existing inverse rendering techniques with co-located light-camera focus on single objects only, without modeling global illumination and near-field lighting more prominent in scenes with multiple objects. We introduce a system that solves this problem in two stages; we first reconstruct the geometry powered by neural volumetric rendering NeuS, followed by inverse neural radiosity that uses the previously predicted geometry to estimate albedo and roughness. However, such a naive combination fails and we propose multiple technical contributions that enable this two-stage approach. We observe that NeuS fails to handle near-field illumination and strong specular reflections from the flashlight in a scene. We propose to implicitly model the effects of near-field illumination and introduce a surface angle loss function to handle specular reflections. Similarly, we observe that invNeRad assumes constant illumination throughout the capture and cannot handle moving flashlights during capture. We propose a light position-aware radiance cache network and additional smoothness priors on roughness to reconstruct reflectance. Experimental evaluation on synthetic and real data shows that our method outperforms the existing co-located light-camera-based inverse rendering techniques. Our approach produces significantly better reflectance and slightly better geometry than capture strategies that do not require a dark room.
Related papers
- SIRe-IR: Inverse Rendering for BRDF Reconstruction with Shadow and
Illumination Removal in High-Illuminance Scenes [51.50157919750782]
We present SIRe-IR, an implicit neural rendering inverse approach that decomposes the scene into environment map, albedo, and roughness.
By accurately modeling the indirect radiance field, normal, visibility, and direct light simultaneously, we are able to remove both shadows and indirect illumination.
Even in the presence of intense illumination, our method recovers high-quality albedo and roughness with no shadow interference.
arXiv Detail & Related papers (2023-10-19T10:44:23Z) - Neural Fields meet Explicit Geometric Representation for Inverse
Rendering of Urban Scenes [62.769186261245416]
We present a novel inverse rendering framework for large urban scenes capable of jointly reconstructing the scene geometry, spatially-varying materials, and HDR lighting from a set of posed RGB images with optional depth.
Specifically, we use a neural field to account for the primary rays, and use an explicit mesh (reconstructed from the underlying neural field) for modeling secondary rays that produce higher-order lighting effects such as cast shadows.
arXiv Detail & Related papers (2023-04-06T17:51:54Z) - NeFII: Inverse Rendering for Reflectance Decomposition with Near-Field
Indirect Illumination [48.42173911185454]
Inverse rendering methods aim to estimate geometry, materials and illumination from multi-view RGB images.
We propose an end-to-end inverse rendering pipeline that decomposes materials and illumination from multi-view images.
arXiv Detail & Related papers (2023-03-29T12:05:19Z) - WildLight: In-the-wild Inverse Rendering with a Flashlight [77.31815397135381]
We propose a practical photometric solution for in-the-wild inverse rendering under unknown ambient lighting.
Our system recovers scene geometry and reflectance using only multi-view images captured by a smartphone.
We demonstrate by extensive experiments that our method is easy to implement, casual to set up, and consistently outperforms existing in-the-wild inverse rendering techniques.
arXiv Detail & Related papers (2023-03-24T17:59:56Z) - Geometry-aware Single-image Full-body Human Relighting [37.381122678376805]
Single-image human relighting aims to relight a target human under new lighting conditions by decomposing the input image into albedo, shape and lighting.
Previous methods suffer from both the entanglement between albedo and lighting and the lack of hard shadows.
Our framework is able to generate photo-realistic high-frequency shadows such as cast shadows under challenging lighting conditions.
arXiv Detail & Related papers (2022-07-11T10:21:02Z) - Physically-Based Editing of Indoor Scene Lighting from a Single Image [106.60252793395104]
We present a method to edit complex indoor lighting from a single image with its predicted depth and light source segmentation masks.
We tackle this problem using two novel components: 1) a holistic scene reconstruction method that estimates scene reflectance and parametric 3D lighting, and 2) a neural rendering framework that re-renders the scene from our predictions.
arXiv Detail & Related papers (2022-05-19T06:44:37Z) - Self-supervised Outdoor Scene Relighting [92.20785788740407]
We propose a self-supervised approach for relighting.
Our approach is trained only on corpora of images collected from the internet without any user-supervision.
Results show the ability of our technique to produce photo-realistic and physically plausible results, that generalizes to unseen scenes.
arXiv Detail & Related papers (2021-07-07T09:46:19Z) - Towards High Fidelity Monocular Face Reconstruction with Rich
Reflectance using Self-supervised Learning and Ray Tracing [49.759478460828504]
Methods combining deep neural network encoders with differentiable rendering have opened up the path for very fast monocular reconstruction of geometry, lighting and reflectance.
ray tracing was introduced for monocular face reconstruction within a classic optimization-based framework.
We propose a new method that greatly improves reconstruction quality and robustness in general scenes.
arXiv Detail & Related papers (2021-03-29T08:58:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.