論文の概要: LLMs Instruct LLMs:An Extraction and Editing Method
- arxiv url: http://arxiv.org/abs/2403.15736v1
- Date: Sat, 23 Mar 2024 06:03:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 21:22:21.670435
- Title: LLMs Instruct LLMs:An Extraction and Editing Method
- Title(参考訳): LLMにLLMを指示する:抽出と編集法
- Authors: Xin Zhang, Tianjie Ju, Huijia Liang, Ying Fu, Qin Zhang,
- Abstract要約: 複雑な文脈からの知識を大規模言語モデル(LLM)に組み込む逐次融合法を提案する。
提案手法では,質問応答の精度は71.69%であった。
- 参考スコア(独自算出の注目度): 12.017822691367705
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The interest in updating Large Language Models (LLMs) without retraining from scratch is substantial, yet it comes with some challenges.This is especially true for situations demanding complex reasoning with limited samples, a scenario we refer to as the Paucity-Constrained Complex Reasoning Adaptation for LLMs (PCRA-LLM).Traditional methods like Low-Rank Adaptation (LoRA) and Retrieval-Augmented Generation (RAG) are inadequate for this critical issue, particularly evident in our exploration of a specific medical context that epitomize the PCRA-LLM's distinct needs.To address the issue, we propose a Sequential Fusion method to incorporate knowledge from complex context into LLMs. This method employs a two-stage framework: initially, it leverages general LLMs to construct knowledge graphs (KGs) for extracting knowledge from complex texts; subsequently, it updates the domain LLMs through knowledge edit. According to our method, the domain LLM achieved a 71.69\% accuracy in question answering tasks. Subsequently, we broadened our assessment to a novel dataset we developed in the economics and management field, where our method realized a 75\% accuracy. These outcomes underline the efficacy and adaptability of our approach for PCRA-LLM across various domains.
- Abstract(参考訳): 大規模な言語モデル(LLM)をスクラッチからリトレーニングすることなく更新することへの関心は大きいが、いくつかの課題が伴っている。これは特に、限られたサンプルで複雑な推論を要求する状況において当てはまる。このシナリオは、LLM(PCRA-LLM)のためのPaucity-Constrained Complex Reasoning Adaptation(英語版)と呼ばれる。
ローランド適応(LoRA)やレトリーバル拡張生成(RAG)のような従来の手法は、特にPCRA-LLMの異なるニーズを浮き彫りにする特定の医学的コンテキストの探索において、この重要な問題に不適当である。この問題に対処するために、複雑な文脈からLLMに知識を組み込むシークエンシャルフュージョン法を提案する。
この手法は2段階のフレームワークを用いており、最初は知識グラフ(KG)を構築して複雑なテキストから知識を抽出し、その後、知識編集によってドメインLLMを更新する。
提案手法では,質問応答におけるLLMの精度は71.69 %であった。
その後、経済・経営分野で開発された新しいデータセットに評価を拡大し、その手法が75%の精度を実現した。
これらの結果は,PCRA-LLMに対するアプローチの有効性と適応性を示すものである。
関連論文リスト
- Beyond Binary: Towards Fine-Grained LLM-Generated Text Detection via Role Recognition and Involvement Measurement [51.601916604301685]
大規模言語モデル(LLM)は、オンライン談話における信頼を損なう可能性のあるコンテンツを生成する。
現在の手法はバイナリ分類に重点を置いており、人間とAIのコラボレーションのような現実のシナリオの複雑さに対処できないことが多い。
バイナリ分類を超えてこれらの課題に対処するために,LLM生成コンテンツを検出するための新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2024-10-18T08:14:10Z) - Efficient Reinforcement Learning with Large Language Model Priors [18.72288751305885]
大規模言語モデル(LLM)は、最近、強力な汎用ツールとして登場した。
本稿では,従来の行動分布としてLLMを扱い,それらをRLフレームワークに統合することを提案する。
LLMに基づくアクションの事前処理を取り入れることで、探索と複雑性の最適化が大幅に削減されることを示す。
論文 参考訳(メタデータ) (2024-10-10T13:54:11Z) - Exploring Language Model Generalization in Low-Resource Extractive QA [57.14068405860034]
ドメインドリフト下でのLarge Language Models (LLM) を用いた抽出質問応答(EQA)について検討する。
パフォーマンスギャップを実証的に説明するための一連の実験を考案する。
論文 参考訳(メタデータ) (2024-09-27T05:06:43Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
本稿では,暗号誤用の検出において,大規模言語モデルを評価するための体系的評価フレームワークを提案する。
11,940個のLCM生成レポートを詳細に分析したところ、LSMに固有の不安定性は、報告の半数以上が偽陽性になる可能性があることがわかった。
最適化されたアプローチは、従来の手法を超え、確立されたベンチマークでこれまで知られていなかった誤用を明らかにすることで、90%近い顕著な検出率を達成する。
論文 参考訳(メタデータ) (2024-07-23T15:31:26Z) - A Practice-Friendly LLM-Enhanced Paradigm with Preference Parsing for Sequential Recommendation [15.153844486572932]
本稿では、シーケンシャルレコメンデータシステム(SRS)のための優先構文解析(P2Rec)を用いた実践的LLM拡張パラダイムを提案する。
具体的には、情報再構成段階において、事前学習したSRSモデルの助けを借りて、協調的な情報注入のための新しいユーザレベルSFTタスクを設計する。
我々のゴールは、LLMが各ユーザのインタラクションシーケンスから対応する優先度分布を再構築することを学ばせることである。
論文 参考訳(メタデータ) (2024-06-01T07:18:56Z) - BLADE: Enhancing Black-box Large Language Models with Small Domain-Specific Models [56.89958793648104]
大規模言語モデル(LLM)は多用途であり、多様なタスクに対処することができる。
従来のアプローチでは、ドメイン固有のデータによる継続的な事前トレーニングを行うか、一般的なLLMをサポートするために検索拡張を採用する。
BLADEと呼ばれる新しいフレームワークを提案する。このフレームワークは、小さなDomain-spEcificモデルでブラックボックスのLArge言語モデルを拡張する。
論文 参考訳(メタデータ) (2024-03-27T08:57:21Z) - LLM2LLM: Boosting LLMs with Novel Iterative Data Enhancement [79.31084387589968]
事前訓練された大規模言語モデル(LLM)は、現在、自然言語処理タスクの大部分を解決するための最先端技術である。
LLM2LLMは、教師のLLMを使って小さなシードデータセットを強化するデータ拡張戦略である。
GSM8Kデータセットでは最大24.2%、CaseHOLDでは32.6%、SNIPSでは32.0%、TRECでは52.6%、SST-2では39.8%の改善が達成された。
論文 参考訳(メタデータ) (2024-03-22T08:57:07Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
本稿では, ファインチューニング LLM のこれらの課題について論じ, 本パッケージ FS-LLM を主な貢献として紹介する。
我々は、FLシナリオにおける将来の拡張のために、包括的フェデレーションパラメータ効率の良い微調整アルゴリズムの実装と汎用プログラミングインタフェースを提供する。
本研究では, FS-LLM の有効性を検証し, FL 設定におけるパラメータ効率の高いパラメータ調整アルゴリズムを用いて, 高度な LLM のベンチマークを行う。
論文 参考訳(メタデータ) (2023-09-01T09:40:36Z) - Large Language Models as Data Preprocessors [9.99065004972981]
大規模言語モデル (LLM) は人工知能において大きな進歩を遂げている。
本研究では、データマイニングおよび分析アプリケーションにおいて重要な段階である、データ前処理におけるその可能性について検討する。
我々は,最先端のプロンプトエンジニアリング技術を統合したデータ前処理のためのLLMベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-30T23:28:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。