論文の概要: General LLMs as Instructors for Domain-Specific LLMs: A Sequential Fusion Method to Integrate Extraction and Editing
- arxiv url: http://arxiv.org/abs/2403.15736v2
- Date: Wed, 13 Nov 2024 14:05:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-14 19:25:04.869711
- Title: General LLMs as Instructors for Domain-Specific LLMs: A Sequential Fusion Method to Integrate Extraction and Editing
- Title(参考訳): ドメイン特化LDMのインストラクタとしての一般LSM:抽出と編集を統合する逐次融合法
- Authors: Xin Zhang, Tianjie Ju, Huijia Liang, Ying Fu, Qin Zhang,
- Abstract要約: 複雑な文脈からの知識をLarge Language Models (LLM) に統合するための逐次融合法を提案する。
本手法を用いて,質問応答におけるドメイン固有LCMの精度は71.7%(平均39.1%)に達した。
これらの知見は、FDoR-ULにおけるアプローチの有効性と柔軟性を、様々な領域で示している。
- 参考スコア(独自算出の注目度): 12.017822691367705
- License:
- Abstract: The substantial interest in updating Large Language Models (LLMs) without retraining from scratch is accompanied by several challenges. This is particularly true when updating LLMs with datasets that necessitate domain-expert reasoning across extensive texts, despite limited samples. We termed the scenario as the Few-Shot Domain-Expert Reasoning for Updating LLMs (FDoR-UL). Traditional methods such as Low-Rank Adaptation (LoRA) and Retrieval Augmented Generation (RAG) are inadequate for addressing this critical issue, particularly evident in our exploration of a specific medical dataset that epitomizes the distinct needs of FDoR-UL. To tackle this challenge, we introduce a Sequential Fusion method to integrate knowledge from complex contexts into LLMs. This method employs a two-stage framework: initially leveraging general LLMs to perform relation extraction for knowledge acquisition from complex texts, followed by updating domain-specific LLMs through Knowledge Editing (KE). Employing our method, domain-specific LLMs achieved a 71.7% accuracy (an average gain of 39.1%) in question-answering tasks. Furthermore, we expanded our evaluation to a novel economics-management dataset we developed, where our method achieved a 75.0% accuracy (an average gain of 45.0%). These findings underscore the effectiveness and flexibility of our approach in FDoR-UL across various domains.
- Abstract(参考訳): ゼロから再トレーニングすることなく、LLM(Large Language Models)を更新することに対する大きな関心は、いくつかの課題を伴う。
これは、限られたサンプルにもかかわらず、広範囲のテキストにわたるドメインエキスパート推論を必要とするデータセットでLLMを更新する場合に特に当てはまる。
このシナリオを、更新LDM(FDoR-UL)のためのFew-Shot Domain-Expert Reasoningと呼ぶ。
Low-Rank Adaptation (LoRA) や Retrieval Augmented Generation (RAG) のような従来の手法は、この重要な問題に対処するには不十分である。
この課題に対処するために,複雑な文脈からの知識をLLMに統合する逐次融合法を提案する。
この手法は、2段階のフレームワークを用いており、最初は複雑なテキストから知識を取得するための関係抽出に一般のLLMを利用し、続いて知識編集(KE)を通じてドメイン固有のLLMを更新する。
この手法を用いることで、ドメイン固有のLCMは質問応答タスクにおいて71.7%の精度(平均39.1%)を達成した。
さらに,提案手法は75.0%の精度(平均利得45.0%)を達成した。
これらの知見は、FDoR-ULにおけるアプローチの有効性と柔軟性を、様々な領域で示している。
関連論文リスト
- RuAG: Learned-rule-augmented Generation for Large Language Models [62.64389390179651]
本稿では,大量のオフラインデータを解釈可能な一階述語論理規則に自動抽出する新しいフレームワーク,RuAGを提案する。
我々は,自然言語処理,時系列,意思決定,産業タスクなど,公共および民間の産業タスクに関する枠組みを評価する。
論文 参考訳(メタデータ) (2024-11-04T00:01:34Z) - Beyond Binary: Towards Fine-Grained LLM-Generated Text Detection via Role Recognition and Involvement Measurement [51.601916604301685]
大規模言語モデル(LLM)は、オンライン談話における信頼を損なう可能性のあるコンテンツを生成する。
現在の手法はバイナリ分類に重点を置いており、人間とAIのコラボレーションのような現実のシナリオの複雑さに対処できないことが多い。
バイナリ分類を超えてこれらの課題に対処するために,LLM生成コンテンツを検出するための新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2024-10-18T08:14:10Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
本稿では,暗号誤用の検出において,大規模言語モデルを評価するための体系的評価フレームワークを提案する。
11,940個のLCM生成レポートを詳細に分析したところ、LSMに固有の不安定性は、報告の半数以上が偽陽性になる可能性があることがわかった。
最適化されたアプローチは、従来の手法を超え、確立されたベンチマークでこれまで知られていなかった誤用を明らかにすることで、90%近い顕著な検出率を達成する。
論文 参考訳(メタデータ) (2024-07-23T15:31:26Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
InFO-RAG という情報改質訓練手法を提案する。
InFO-RAGは低コストで、様々なタスクにまたがっている。
LLaMA2の性能を平均9.39%向上させる。
論文 参考訳(メタデータ) (2024-02-28T08:24:38Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
強化学習(Reinforcement Learning, RL)は、将来の行動方針をフィードバックで改善することにより、シーケンシャルな意思決定問題の事実上の標準的実践となった。
大規模言語モデル(LLM)の最近の発展は、言語理解と生成において印象的な能力を示したが、探索と自己改善能力に欠けていた。
我々はLINVITというアルゴリズムを開発し、LLMガイダンスを値ベースRLの正規化因子として組み込んで学習に必要なデータ量を大幅に削減する。
論文 参考訳(メタデータ) (2024-02-25T20:07:13Z) - Blinded by Generated Contexts: How Language Models Merge Generated and Retrieved Contexts When Knowledge Conflicts? [45.233517779029334]
応答が生成されたコンテキストと検索されたコンテキストに関連付けられているかどうかを識別する。
実験では、誤った情報を提供する場合でも、生成されたコンテキストを優先する複数のLSMにおいて、重大なバイアスが示される。
論文 参考訳(メタデータ) (2024-01-22T12:54:04Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
本調査は,大規模言語モデル(LLM)における事実性の重要課題に対処する。
LLMが様々な領域にまたがる応用を見出すにつれ、その出力の信頼性と正確性は重要となる。
論文 参考訳(メタデータ) (2023-10-11T14:18:03Z) - Assessing Hidden Risks of LLMs: An Empirical Study on Robustness,
Consistency, and Credibility [37.682136465784254]
我々は、ChatGPT、LLaMA、OPTを含む、主流の大規模言語モデル(LLM)に100万以上のクエリを実行します。
入力が極端に汚染された場合でも、ChatGPTは正しい答えを得ることができる。
そこで本研究では,LCMによる評価において,そのようなデータの有効性を大まかに決定する新たな指標を提案する。
論文 参考訳(メタデータ) (2023-05-15T15:44:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。