Phase estimation via coherent and photon-catalyzed squeezed vacuum states
- URL: http://arxiv.org/abs/2403.15761v1
- Date: Sat, 23 Mar 2024 08:26:04 GMT
- Title: Phase estimation via coherent and photon-catalyzed squeezed vacuum states
- Authors: Zekun Zhao, Qingqian Kang, Huan Zhang, Teng Zhao, Cunjin Liu, Liyun Hu,
- Abstract summary: We propose a scheme to input the coherent state mixed with photoncatalyzed squeezed vacuum state into the Mach-Zender interferometer.
The phase measurement accuracy can exceed the standard quantum limit, and even surpass the Heisenberg limit.
- Score: 7.289718191016964
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The research focused on enhancing the measurement accuracy through the use of non-Gaussian states has garnered increasing attention. In this study, we propose a scheme to input the coherent state mixed with photon-catalyzed squeezed vacuum state into the Mach-Zender interferometer to enhance phase measurement accuracy. The findings demonstrate that photon catalysis, particularly multi-photon catalysis, can effectively improve the phase sensitivity of parity detection and the quantum Fisher information. Moreover, the situation of photon losses in practical measurement was studied. The results indicate that external dissipation has a greater influence on phase sensitivity than the internal dissipation. Compared to input coherent state mixed with squeezed vacuum state, the utilization of coherent state mixed photon-catalyzed squeezed vacuum state, particularly the mixed multi-photon catalyzed squeezed vacuum state as input, can enhance the phase sensitivity and quantum Fisher information. Furthermore, the phase measurement accuracy can exceed the standard quantum limit, and even surpass the Heisenberg limit. This research is expected to significantly contribute to quantum precision measurement.
Related papers
- Cavity-Quantum Electrodynamics with Moiré Flatband Photonic Crystals [35.119260614523256]
A quantum dot can be tuned by a factor of 40, ranging from 42 ps to 1692 ps, which is attributed to strong Purcell enhancement and Purcell inhibition effects.
Our findings pave the way for moir'e flatband cavity-enhanced quantum light sources, quantum optical switches, and quantum nodes for quantum internet applications.
arXiv Detail & Related papers (2024-11-25T18:52:11Z) - Phase sensitivity for an SU(1,1) interferometer via multiphoton subtraction at the output port [7.200889618563686]
Internal photon losses within the SU(1,1) interferometer have a more significant impact on the phase sensitivity compared to external photon losses.
Even under conditions of severe photon loss, the multiphoton subtraction operations can enable the phase sensitivity to surpass the standard quantum limit.
arXiv Detail & Related papers (2024-10-23T07:08:47Z) - Phase estimation via number-conserving operation inside the SU(1,1) interferometer [0.0]
We propose a theoretical scheme to improve the precision of phase measurement using homodyne detection.
We analyze the effects of number-conserving operations on the phase sensitivity, the quantum Fisher information, and the quantum Cramer-Rao bound under both ideal and photon losses scenarios.
arXiv Detail & Related papers (2024-03-29T11:04:38Z) - Precision phase measurement in Mach-Zehnder interferometer with
three-photon by using a weak coherent and a squeezed vacuum state [0.0]
The measured three-photon coincidence in this system is quantified as a function of a ratio between the amplitude of the coherent state and the squeezed parameter of squeezed vacuum.
It shows that the sensitivity phase reaches the Heisenberg limit when an optimal ratio is chosen.
arXiv Detail & Related papers (2023-09-17T08:11:03Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - Quantum multiparameter estimation with multi-mode photon catalysis
entangled squeezed state [8.939491159598491]
We propose a method to generate the multi-mode entangled squeezed vacuum states (MECSVS) by embedding the cross-Kerr nonlinear medium into the Mach-Zehnder interferometer.
This method realizes the exchange of quantum states between different modes based on Fredkin gate.
arXiv Detail & Related papers (2022-10-27T12:45:47Z) - Phase estimation of Mach-Zehnder interferometer via Laguerre excitation
squeezed state [7.488329113191202]
We introduce a kind of non-Gaussian state, Laguerre squeezed excitation state as input of traditional Mach-Zehnder interferometer.
We consider the effects of both internal and external losses on phase estimation by using quantum Fisher information and parity detection.
arXiv Detail & Related papers (2022-09-01T10:14:43Z) - Remote Phase Sensing by Coherent Single Photon Addition [58.720142291102135]
We propose a remote phase sensing scheme inspired by the high sensitivity of the entanglement produced by coherent multimode photon addition on the phase set in the remote heralding apparatus.
We derive the optimal observable to perform remote phase estimation from heralded quadrature measurements.
arXiv Detail & Related papers (2021-08-26T14:52:29Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Detectable Signature of Quantum Friction on a Sliding Particle in Vacuum [58.720142291102135]
We show traces of quantum friction in the degradation of the quantum coherence of a particle.
We propose to use the accumulated geometric phase acquired by a particle as a quantum friction sensor.
The experimentally viable scheme presented can spark renewed optimism for the detection of non-contact friction.
arXiv Detail & Related papers (2021-03-22T16:25:27Z) - Entanglement robustness to excitonic spin precession in a quantum dot [43.55994393060723]
A semiconductor quantum dot (QD) is an attractive resource to generate polarization-entangled photon pairs.
We study the excitonic spin precession (flip-flop) in a family of QDs with different excitonic fine-structure splitting (FSS)
Our results reveal that coherent processes leave the time post-selected entanglement of QDs unaffected while changing the eigenstates of the system.
arXiv Detail & Related papers (2020-01-31T13:50:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.