論文の概要: Carbon Intensity-Aware Adaptive Inference of DNNs
- arxiv url: http://arxiv.org/abs/2403.15824v1
- Date: Sat, 23 Mar 2024 12:33:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 20:52:58.811748
- Title: Carbon Intensity-Aware Adaptive Inference of DNNs
- Title(参考訳): 炭素強度を考慮したDNNの適応推論
- Authors: Jiwan Jung,
- Abstract要約: 我々のアルゴリズムは、低強度期間中により大きく、高精度なモデルを使用し、高強度期間中により小さく、より精度の低いモデルを使用する。
また, 炭素フットプリントの観点から, 適応モデル選択の有効性を定量的に測定する指標である炭素放出効率も導入した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: DNN inference, known for its significant energy consumption and the resulting high carbon footprint, can be made more sustainable by adapting model size and accuracy to the varying carbon intensity throughout the day. Our heuristic algorithm uses larger, high-accuracy models during low-intensity periods and smaller, lower-accuracy ones during high-intensity periods. We also introduce a metric, carbon-emission efficiency, which quantitatively measures the efficacy of adaptive model selection in terms of carbon footprint. The evaluation showed that the proposed approach could improve the carbon emission efficiency in improving the accuracy of vision recognition services by up to 80%.
- Abstract(参考訳): DNN推論は、そのかなりのエネルギー消費と結果として生じる高い炭素フットプリントで知られており、モデルのサイズと精度を1日を通して異なる炭素強度に適応させることにより、より持続可能なものにすることができる。
我々のヒューリスティックアルゴリズムは、低強度期間における大規模で高精度なモデルと、高強度期間における小型で低精度なモデルを用いる。
また, 炭素フットプリントの観点から, 適応モデル選択の有効性を定量的に測定する指標である炭素放出効率も導入した。
評価の結果, 提案手法は, 視覚認識サービスの精度を最大80%向上させることで, 二酸化炭素排出効率を向上する可能性が示唆された。
関連論文リスト
- Enhancing Carbon Emission Reduction Strategies using OCO and ICOS data [40.572754656757475]
我々は,OCO-2(Orbiting Carbon Observatories)とOCO-3(Orbiting Carbon Observatories)の衛星データとICOS(Integrated Carbon Observation System)の地上観測とECMWFリアナリシスv5(ERA5)の気象データを統合することで,局部的なCO2モニタリングを強化する手法を提案する。
衛星観測から地上レベルCO2を予測するために,K-nearest neighbor (KNN) と機械学習モデルを用いて,3.92ppmのルート平均正方形誤差を達成した。
論文 参考訳(メタデータ) (2024-10-05T21:23:58Z) - Spectrum-Aware Parameter Efficient Fine-Tuning for Diffusion Models [73.88009808326387]
生成モデルのための新しいスペクトル対応適応フレームワークを提案する。
本手法は,事前学習した重みの特異値とその基底ベクトルを調節する。
本稿では,計算効率と表現能力のバランスをとるスペクトルオーソ分解適応(SODA)を提案する。
論文 参考訳(メタデータ) (2024-05-31T17:43:35Z) - Generative AI for Low-Carbon Artificial Intelligence of Things with Large Language Models [67.0243099823109]
ジェネレーティブAI(GAI)は、AIoT(Artificial Intelligence of Things)の二酸化炭素排出量を減らす大きな可能性を秘めている
本稿では, 炭素排出量削減のためのGAIの可能性について検討し, 低炭素AIoTのための新しいGAI対応ソリューションを提案する。
本稿では,Large Language Model (LLM) を利用したCO_2排出最適化フレームワークを提案し,このフレームワークにより,プラグ可能なLLMとRetrieval Augmented Generation (RAG) モジュールを設計する。
論文 参考訳(メタデータ) (2024-04-28T05:46:28Z) - FedGreen: Carbon-aware Federated Learning with Model Size Adaptation [36.283273000969636]
フェデレートラーニング(FL)は、分散クライアントからモデルを構築するための有望な協調フレームワークを提供する。
FLクライアントをホストするクラウドとエッジサーバは、さまざまな電力源を持つ地理的な場所の影響を受け、多様な炭素フットプリントを示す可能性がある。
我々は、クライアントと共有する適応型モデルサイズを採用することにより、モデルを効率的に訓練するための、炭素を意識したFLアプローチであるFedGreenを提案する。
論文 参考訳(メタデータ) (2024-04-23T20:37:26Z) - CAFE: Carbon-Aware Federated Learning in Geographically Distributed Data
Centers [18.54380015603228]
大規模人工知能(AI)モデルの訓練には、計算能力とエネルギーが要求されるため、炭素フットプリントが増加し、環境に悪影響を及ぼす可能性がある。
本稿は、地理的に分散した(地理的に分散した)データセンターでAIモデルをトレーニングする際の課題を考察し、学習性能と炭素フットプリントのバランスを強調する。
固定炭素フットプリント予算内でのトレーニングを最適化するために,CAFE(Carbon-Aware Federated Learning)と呼ばれる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-06T23:59:22Z) - A Comparative Study of Machine Learning Algorithms for Anomaly Detection
in Industrial Environments: Performance and Environmental Impact [62.997667081978825]
本研究は,環境の持続可能性を考慮した高性能機械学習モデルの要求に応えることを目的としている。
Decision TreesやRandom Forestsといった従来の機械学習アルゴリズムは、堅牢な効率性とパフォーマンスを示している。
しかし, 資源消費の累積増加にもかかわらず, 最適化された構成で優れた結果が得られた。
論文 参考訳(メタデータ) (2023-07-01T15:18:00Z) - Machine Guided Discovery of Novel Carbon Capture Solvents [48.7576911714538]
機械学習は、材料開発における時間とリソースの負担を軽減するための有望な方法を提供する。
そこで我々は, 市販の酸性ガススクラップ式炭素捕捉装置に適合する新規な水性アミンを, エンドツーエンドで発見する「発見サイクル」を開発した。
予測プロセスは、材料パラメータの両方の実験に対して60%の精度を示し、外部テストセット上では1つのパラメータに対して80%の精度を示す。
論文 参考訳(メタデータ) (2023-03-24T18:32:38Z) - Estimating the Carbon Footprint of BLOOM, a 176B Parameter Language
Model [72.65502770895417]
176ビリオンパラメータ言語モデルBLOOMの炭素フットプリントを,そのライフサイクルにわたって定量化する。
BLOOMの最終訓練で約24.7トンのカルボネックが放出されたと推定する。
本稿では,機械学習モデルの炭素フットプリントを正確に推定することの難しさについて論じる。
論文 参考訳(メタデータ) (2022-11-03T17:13:48Z) - Measuring the Carbon Intensity of AI in Cloud Instances [91.28501520271972]
我々は,ソフトウェアの炭素強度を測定するための枠組みを提供し,運転中の炭素排出量を測定することを提案する。
私たちは、Microsoft Azureクラウドコンピューティングプラットフォームにおける排出削減のための一連のアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-10T17:04:04Z) - Full-Cycle Energy Consumption Benchmark for Low-Carbon Computer Vision [31.781943982148025]
我々は,効率的なコンピュータビジョンモデルのための最初の大規模エネルギー消費ベンチマークを示す。
モデル利用強度の異なる全サイクルエネルギー消費を明示的に評価するための新しい指標を提案する。
論文 参考訳(メタデータ) (2021-08-30T18:22:36Z) - Estimating air quality co-benefits of energy transition using machine
learning [5.758035706324685]
大気質の改善から化石燃料の使用を減らすという健康上の利点を推定することは、二酸化炭素排出量の削減に重要な根拠となる。
本研究では, 高精度かつ堅牢な平均粒径(PM2.5)濃度推定が可能な, 高精度かつ簡潔な機械学習フレームワークを開発した。
本研究は, 炭素中性エネルギーシステムへの移行における費用対効果を最大化するために, 慎重な政策設計を促すものである。
論文 参考訳(メタデータ) (2021-05-29T14:52:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。