論文の概要: ARO: Large Language Model Supervised Robotics Text2Skill Autonomous Learning
- arxiv url: http://arxiv.org/abs/2403.15834v1
- Date: Sat, 23 Mar 2024 13:21:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 20:52:58.797928
- Title: ARO: Large Language Model Supervised Robotics Text2Skill Autonomous Learning
- Title(参考訳): ARO:ロボットのテキスト2スキルの自律学習を監督する大規模言語モデル
- Authors: Yiwen Chen, Yuyao Ye, Ziyi Chen, Chuheng Zhang, Marcelo H. Ang,
- Abstract要約: 本稿では,Large Language Model Supervised Robotics Text2Skill Autonomous Learningフレームワークを紹介する。
このフレームワークは、ロボットスキル学習プロセスにおける人間の参加を、大規模言語モデルに置き換えることを目的としている。
本稿では,人間の介入なしに部分的なタスクを完了できる完全自律型ロボットスキル学習の実現を実証する。
- 参考スコア(独自算出の注目度): 19.337423880514717
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Robotics learning highly relies on human expertise and efforts, such as demonstrations, design of reward functions in reinforcement learning, performance evaluation using human feedback, etc. However, reliance on human assistance can lead to expensive learning costs and make skill learning difficult to scale. In this work, we introduce the Large Language Model Supervised Robotics Text2Skill Autonomous Learning (ARO) framework, which aims to replace human participation in the robot skill learning process with large-scale language models that incorporate reward function design and performance evaluation. We provide evidence that our approach enables fully autonomous robot skill learning, capable of completing partial tasks without human intervention. Furthermore, we also analyze the limitations of this approach in task understanding and optimization stability.
- Abstract(参考訳): ロボット学習は、デモ、強化学習における報酬関数の設計、人間のフィードバックを用いたパフォーマンス評価など、人間の専門知識や努力に大きく依存している。
しかし、人的援助への依存は、高い学習コストをもたらし、スキル学習のスケールを難しくする。
本研究では,ロボットスキル学習プロセスにおける人間の参加を,報酬関数の設計と性能評価を取り入れた大規模言語モデルに置き換えることを目的とした,大規模言語モデルスーパービジョンロボティクステキスト2スキル自律学習(ARO)フレームワークを紹介する。
本稿では,人間の介入なしに部分的なタスクを完了できる完全自律型ロボットスキル学習の実現を実証する。
さらに、タスク理解と最適化安定性におけるこのアプローチの限界についても分析する。
関連論文リスト
- $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
本稿では,インターネット規模のセマンティック知識を継承するために,事前学習された視覚言語モデル(VLM)上に構築された新しいフローマッチングアーキテクチャを提案する。
我々は,事前訓練後のタスクをゼロショットで実行し,人からの言語指導に追従し,微調整で新たなスキルを習得する能力の観点から,我々のモデルを評価した。
論文 参考訳(メタデータ) (2024-10-31T17:22:30Z) - SPIRE: Synergistic Planning, Imitation, and Reinforcement Learning for Long-Horizon Manipulation [58.14969377419633]
タスクをより小さな学習サブプロブレムに分解し、第2に模倣と強化学習を組み合わせてその強みを最大化するシステムであるspireを提案する。
我々は、模倣学習、強化学習、計画を統合する従来の手法よりも平均タスク性能が35%から50%向上していることを発見した。
論文 参考訳(メタデータ) (2024-10-23T17:42:07Z) - Generalized Robot Learning Framework [10.03174544844559]
本稿では,様々なロボットや環境に容易に再現可能かつ伝達可能な,低コストなロボット学習フレームワークを提案する。
我々は,産業用ロボットにおいても,デプロイ可能な模倣学習をうまく適用できることを実証した。
論文 参考訳(メタデータ) (2024-09-18T15:34:31Z) - Affordance-Guided Reinforcement Learning via Visual Prompting [51.361977466993345]
Keypoint-based Affordance Guidance for Improvements (KAGI) は、視覚言語モデル(VLM)によって形成される報酬を自律的なRLに活用する手法である。
自然言語記述によって指定された実世界の操作タスクにおいて、KAGIは自律的なRLのサンプル効率を改善し、20Kのオンライン微調整ステップでタスク完了を成功させる。
論文 参考訳(メタデータ) (2024-07-14T21:41:29Z) - Human-Robot Mutual Learning through Affective-Linguistic Interaction and Differential Outcomes Training [Pre-Print] [0.3811184252495269]
本研究では,感情言語コミュニケーションが人間ロボットの文脈における相互学習にどのように影響するかを検証する。
児童介護のダイナミックスからインスピレーションを得て、私たちの人間とロボットのインタラクションのセットアップは、内部的、ホメオスタティックに制御されたニーズのコミュニケーション方法を学ぶための(シミュレートされた)ロボットで構成されています。
論文 参考訳(メタデータ) (2024-07-01T13:35:08Z) - Practice Makes Perfect: Planning to Learn Skill Parameter Policies [34.51008914846429]
本研究では,将来的なタスクの成功を最大化するために,どのスキルを実践するかという,アクティブな学習問題に焦点をあてる。
本稿では,ロボットが各スキルの能力を推定し,能力の外挿を行い,能力認識計画を通じてタスク分布のスキルを定めておくことを提案する。
このアプローチは、ロボットが環境をリセットせずに繰り返し計画し、実践し、学習する完全に自律的なシステム内で実装される。
論文 参考訳(メタデータ) (2024-02-22T23:58:26Z) - Large Language Models for Robotics: A Survey [40.76581696885846]
大規模言語モデル(LLM)は自然言語の処理と生成能力を有しており、ロボットとの効率的な対話と協調を促進する。
本レビューは,ロボット制御,知覚,意思決定,経路計画といった重要な領域に対する,ロボット工学におけるLLMの応用と貢献を要約することを目的としている。
論文 参考訳(メタデータ) (2023-11-13T10:46:35Z) - Mimicking the Maestro: Exploring the Efficacy of a Virtual AI Teacher in
Fine Motor Skill Acquisition [3.07176124710244]
運動スキル、特に手書きなどの運動スキルは、学術的な追求や日常生活において重要な役割を担っている。
これらのスキルを効果的に教える伝統的な方法は、時間がかかり、一貫性がない。
我々は,人間の教官の特徴を捉えたAI教師モデルを導入する。
論文 参考訳(メタデータ) (2023-10-16T11:11:43Z) - Stabilizing Contrastive RL: Techniques for Robotic Goal Reaching from
Offline Data [101.43350024175157]
自己指導型学習は、制御戦略を学ぶのに必要な人間のアノテーションとエンジニアリングの労力を減らす可能性がある。
我々の研究は、強化学習(RL)自体が自己監督的な問題であることを示す先行研究に基づいている。
コントラスト学習に基づく自己教師付きRLアルゴリズムは,実世界の画像に基づくロボット操作タスクを解くことができることを示す。
論文 参考訳(メタデータ) (2023-06-06T01:36:56Z) - Human Decision Makings on Curriculum Reinforcement Learning with
Difficulty Adjustment [52.07473934146584]
我々は,カリキュラム強化学習結果を,人的意思決定プロセスから学ぶことで,難しすぎず,難しすぎるような望ましいパフォーマンスレベルに導く。
本システムは非常に並列化可能であり,大規模強化学習アプリケーションの訓練が可能となる。
強化学習性能は、人間の所望の難易度と同期してうまく調整できることが示される。
論文 参考訳(メタデータ) (2022-08-04T23:53:51Z) - Scalable Multi-Task Imitation Learning with Autonomous Improvement [159.9406205002599]
我々は、自律的なデータ収集を通じて継続的に改善できる模倣学習システムを構築している。
我々は、ロボット自身の試行を、実際に試みたタスク以外のタスクのデモとして活用する。
従来の模倣学習のアプローチとは対照的に,本手法は,継続的改善のための疎い監視によるデータ収集を自律的に行うことができる。
論文 参考訳(メタデータ) (2020-02-25T18:56:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。