Once for Both: Single Stage of Importance and Sparsity Search for Vision Transformer Compression
- URL: http://arxiv.org/abs/2403.15835v1
- Date: Sat, 23 Mar 2024 13:22:36 GMT
- Title: Once for Both: Single Stage of Importance and Sparsity Search for Vision Transformer Compression
- Authors: Hancheng Ye, Chong Yu, Peng Ye, Renqiu Xia, Yansong Tang, Jiwen Lu, Tao Chen, Bo Zhang,
- Abstract summary: We investigate how to integrate the evaluations of importance and sparsity scores into a single stage.
We present OFB, a cost-efficient approach that simultaneously evaluates both importance and sparsity scores.
Experiments demonstrate that OFB can achieve superior compression performance over state-of-the-art searching-based and pruning-based methods.
- Score: 63.23578860867408
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent Vision Transformer Compression (VTC) works mainly follow a two-stage scheme, where the importance score of each model unit is first evaluated or preset in each submodule, followed by the sparsity score evaluation according to the target sparsity constraint. Such a separate evaluation process induces the gap between importance and sparsity score distributions, thus causing high search costs for VTC. In this work, for the first time, we investigate how to integrate the evaluations of importance and sparsity scores into a single stage, searching the optimal subnets in an efficient manner. Specifically, we present OFB, a cost-efficient approach that simultaneously evaluates both importance and sparsity scores, termed Once for Both (OFB), for VTC. First, a bi-mask scheme is developed by entangling the importance score and the differentiable sparsity score to jointly determine the pruning potential (prunability) of each unit. Such a bi-mask search strategy is further used together with a proposed adaptive one-hot loss to realize the progressive-and-efficient search for the most important subnet. Finally, Progressive Masked Image Modeling (PMIM) is proposed to regularize the feature space to be more representative during the search process, which may be degraded by the dimension reduction. Extensive experiments demonstrate that OFB can achieve superior compression performance over state-of-the-art searching-based and pruning-based methods under various Vision Transformer architectures, meanwhile promoting search efficiency significantly, e.g., costing one GPU search day for the compression of DeiT-S on ImageNet-1K.
Related papers
- Generalized Correspondence Matching via Flexible Hierarchical Refinement
and Patch Descriptor Distillation [13.802788788420175]
Correspondence matching plays a crucial role in numerous robotics applications.
This paper addresses the limitations of deep feature matching (DFM), a state-of-the-art (SoTA) plug-and-play correspondence matching approach.
Our proposed method achieves an overall performance in terms of mean matching accuracy of 0.68, 0.92, and 0.95 with respect to the tolerances of 1, 3, and 5 pixels, respectively.
arXiv Detail & Related papers (2024-03-08T15:32:18Z) - A Manifold Representation of the Key in Vision Transformers [8.938418994111716]
This paper explores the concept of disentangling the key from the query and value, and adopting a manifold representation for the key.
Our experiments reveal that decoupling and endowing the key with a manifold structure can enhance the model's performance.
arXiv Detail & Related papers (2024-02-01T12:01:43Z) - Refine, Discriminate and Align: Stealing Encoders via Sample-Wise Prototypes and Multi-Relational Extraction [57.16121098944589]
RDA is a pioneering approach designed to address two primary deficiencies prevalent in previous endeavors aiming at stealing pre-trained encoders.
It is accomplished via a sample-wise prototype, which consolidates the target encoder's representations for a given sample's various perspectives.
For more potent efficacy, we develop a multi-relational extraction loss that trains the surrogate encoder to Discriminate mismatched embedding-prototype pairs.
arXiv Detail & Related papers (2023-12-01T15:03:29Z) - MGAS: Multi-Granularity Architecture Search for Trade-Off Between Model
Effectiveness and Efficiency [10.641875933652647]
We introduce multi-granularity architecture search (MGAS) to discover both effective and efficient neural networks.
We learn discretization functions specific to each granularity level to adaptively determine the unit remaining ratio according to the evolving architecture.
Extensive experiments on CIFAR-10, CIFAR-100 and ImageNet demonstrate that MGAS outperforms other state-of-the-art methods in achieving a better trade-off between model performance and model size.
arXiv Detail & Related papers (2023-10-23T16:32:18Z) - Revisiting the Evaluation of Image Synthesis with GANs [55.72247435112475]
This study presents an empirical investigation into the evaluation of synthesis performance, with generative adversarial networks (GANs) as a representative of generative models.
In particular, we make in-depth analyses of various factors, including how to represent a data point in the representation space, how to calculate a fair distance using selected samples, and how many instances to use from each set.
arXiv Detail & Related papers (2023-04-04T17:54:32Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
We propose a method for effective and efficient multispectral fusion of the two modalities in an adapted single-stage anchor-free base architecture.
We aim at learning pedestrian representations based on object center and scale rather than direct bounding box predictions.
Results show our method's effectiveness in detecting small-scaled pedestrians.
arXiv Detail & Related papers (2020-08-19T13:13:01Z) - Parameter Sharing Exploration and Hetero-Center based Triplet Loss for
Visible-Thermal Person Re-Identification [17.402673438396345]
This paper focuses on the visible-thermal cross-modality person re-identification (VT Re-ID) task.
Our proposed method distinctly outperforms the state-of-the-art methods by large margins.
arXiv Detail & Related papers (2020-08-14T07:40:35Z) - Towards High Performance Human Keypoint Detection [87.1034745775229]
We find that context information plays an important role in reasoning human body configuration and invisible keypoints.
Inspired by this, we propose a cascaded context mixer ( CCM) which efficiently integrates spatial and channel context information.
To maximize CCM's representation capability, we develop a hard-negative person detection mining strategy and a joint-training strategy.
We present several sub-pixel refinement techniques for postprocessing keypoint predictions to improve detection accuracy.
arXiv Detail & Related papers (2020-02-03T02:24:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.